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Rényi entropies, Sn, admit a natural generalization in the presence of global symmetries. These “charged
Rényi entropies” are functions of the chemical potential μ conjugate to the charge contained in the
entangling region and reduce to the usual notions as μ → 0. For n ¼ 1, this provides a notion of charged
entanglement entropy. In this Letter, we prove that for a general dð≥ 3Þ-dimensional conformal field theory,
the leading correction to the uncharged entanglement entropy across a spherical entangling surface is
quadratic in the chemical potential, positive definite, and universally controlled (up to fixed d-dependent
constants) by the coefficients CJ and a2. These fully characterize, for a given theory, the current correlators
hJJi and hTJJi, as well as the energy flux measured at infinity produced by the insertion of the current
operator. Our result is motivated by analytic holographic calculations for a special class of higher-curvature
gravities coupled to a (d − 2) form in general dimensions as well as for free fields in d ¼ 4. A proof for
general theories and dimensions follows from previously known universal identities involving the magnetic
response of twist operators introduced in A. Belin et al. [J. High Energy Phys. 12 (2013) 059.] and basic
thermodynamic relations.

DOI: 10.1103/PhysRevLett.129.021601

The Rényi and entanglement entropies (EE) of spatial
regions in the vacuum state of d-dimensional conformal
field theories (CFTs) capture interesting universal informa-
tion. This includes the Virasoro central charge c for two-
dimensional theories [1,2], the Euclidean partition function
on the sphere in odd dimensions [3,4], the trace-anomaly
coefficients in even dimensions [5–8], the stress-tensor
two-point function charge CT [9–12], and the thermal
entropy coefficient CS [13–15], among others [16–18].
From a different perspective, it has been in fact suggested
that the full CFT data might be accessible from a long-
distance expansion of the mutual or N-partite information
[19–25]. In this Letter, we consider a natural generalization
of Rényi and entanglement entropies for theories with
global symmetries [26] and add a new entry to the list of
general relations satisfied by these quantities that connect
them to various universal quantities.
Given a spatial bipartition, the (uncharged) Rényi

entropy for some region A is defined as Sn ≡ ½1=ð1 − nÞ�×
log TrρnA, where ρA is the partial-trace density matrix
associated to that region. The entanglement entropy SEE

is obtained as the n → 1 limit of Sn. A charged notion of
Rényi entropy was introduced in [26] for theories with
global symmetries—see also [27–29]. This is given by

SnðμÞ ¼
1

1 − n
log Tr

�
ρA

eμQA

nAðμÞ
�
n

; ð1Þ

where QA is the total charge contained in the entangling
region A, μ is the chemical potential conjugate to the
charge, and nAðμÞ is a normalization factor. It is obvious
from its definition that SnðμÞ reduces to Sn as μ → 0. An
interesting feature of SnðμÞ is that, for spherical entangling
surfaces, it admits a generalization of the conformal map of
[3,30] that allows one to evaluate this quantity from the,
usually simpler, thermal entropy in the hyperbolic cylinder
[26]. This enables one to perform explicit holographic and
free-field calculations, which we exploit below. Additional
studies of charged Rényi entropies and closely related
notions can be found, e.g., in [31–41].
In the uncharged case, the EE universal term across a

spherical entangling surface in a d-dimensional CFT reads
(see, e.g., [42,43])

SEE
νd−1

¼ a⋆; where νd−1 ≡
8<
:

ð−Þd−22 4 log
�
R
δ

�
;

ð−Þd−12 2π;
ð2Þ
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respectively, for even and odd d. In this formula, R is the
radius of the spherical region and δ a UV regulator. In even
dimensions, the universal quantity a⋆ is nothing but the
A-type trace-anomaly coefficient [5–8]. In odd d, a⋆ is
proportional to the Euclidean partition function of the
theory on the round sphere [3,4].
In this Letter, we show that the charged entanglement

entropy for a spherical region is given, for general d-
dimensional CFTs, by

SEEðμÞ
νd−1

¼a⋆þ πdCJ

ðd−1Þ2Γðd−2Þ
�
1þðd−2Þa2

dðd−1Þ
�
ðμRÞ2 ð3Þ

plus subleading corrections. Equation (3) can be alterna-
tively formulated as a statement involving the first two
derivatives of SnðμÞ with respect to μ evaluated at n ¼ 1,
μ ¼ 0 in an obvious way. In the above expression, CJ and
a2 are two constants that characterize the corresponding
CFT. On the one hand, CJ is the only theory-dependent
information that is not fully determined by conformal
symmetry in the correlator of the current associated to
the global symmetry, namely [44]

hJaðxÞJbð0Þi ¼
CJ

jxj2ðd−1Þ
�
δab −

2xaxb
jxj2

�
: ð4Þ

As for a2, its meaning can be understood from two
different, albeit related, perspectives. On the one hand, the
three-point function hTJJi involves a complicated tensorial
structure (which can be found in the Supplemental Material
[45]) shared by all CFTs up to two theory-dependent
coefficients [44]. These coefficients can be chosen to be
CJ and a second one denoted a2. The latter can also be
understood from conformal collider physics. Consider a
CFT in flat space in its vacuum state and the insertion of a
(smeared) current operator ϵaJa for certain constant polari-
zation tensor ϵa. The expectation value of the energy flux
measured at infinity in some direction n⃗ produced by such
insertion is universally given by [53]

hEðn⃗ÞiJ ¼
E

Ωðd−2Þ

�
1þ a2

�jϵ · nj2
jϵj2 −

1

d − 1

��
; ð5Þ

whereΩðd−2Þ is the volume of the unit radius Sðd−2Þ and E is
the total energy. Again, the tensorial structure is fully fixed
by symmetry, and all information about the corresponding
CFT is in this case encoded in the coefficient a2.
Demanding the energy flux to be positive in all directions
imposes the bounds −ðd − 1Þ=ðd − 2Þ ≤ a2 ≤ ðd − 1Þ
[53,54], which implies, given the positivity of CJ [44],
that the leading correction in Eq. (3) is positive for general
theories.
Equation (3) then tells us that the charged entanglement

entropy across a sphere of a general CFT for small values of
the chemical potential has a leading correction to the

uncharged result that is quadratic in the chemical potential,
positive, and universally controlled by the charges CJ, a2,
which characterize the theory as explained above.
Electromagnetic quasitopological gravities.—The reali-

zation that Eq. (3) may be a universal relation came to us
from holographic calculations, so we present those first. We
consider the following bulk theory for the metric field
coupled to a (d − 2)-form B with field strength H ¼ dB:

IEQG ¼
Z

ddþ1x
ffiffiffiffiffijgjp

16πG

�
Rþ dðd− 1Þ

L2
−

2H2

ðd− 1Þ!

þ λL2X4

ðd− 2Þðd− 3Þ þ
2α1L2

ðd− 1Þ!L
ð1Þ
RH2 þ 2α2L2

ðd− 1Þ!L
ð2Þ
RH2

�
;

ð6Þ

where G is the Newton constant, L is a length scale, λ, α1,
α2 are dimensionless couplings, X4 is the Gauss-Bonnet
density, and [55]

Lð1Þ
RH2 ≡H2R − ðd − 1Þð2d − 1ÞRμν

ρσ;

Lð2Þ
RH2 ≡ Rμ

νðH2Þνμ − ðd − 1ÞRμν
ρσðH2Þρσμν; ð7Þ

where ðH2Þρσμν ≡Hρσα3α4…αd−1Hμνα3α4…αd−1 are two electro-
magnetic quasitopological theories (EQGs) [54,56]. These
belong to a class of modifications of Einstein gravity with
distinct properties, including simple black hole solutions and
linearized spectrum, analytic thermodynamics, as well as
providing a basis for general-order effective actions
[57–67]. From an AdS=CFT perspective [68–70], Eq. (6)
defines models of (d − 1)-dimensional CFTs parametrized
by the bulk action couplings. Different CFT magnitudes will
involve different functions of those couplings [15,71–74],
which can be used to elucidate universal patterns when some
of those magnitudes in fact display the same dependence.
This approach has been successfully used before, e.g., in
[12,42,43,75–80].
Equation (6) can be mapped to a different theory with a

vector field by dualizing the B field. The field strength of
the dual vector field F ¼ dA, is then identified as F ¼
4πGl−1� ðd − 1Þ!⋆½∂L=∂H�, where l� is an undetermined
length scale that we introduce so that Aμ has units of
energy. The bulk gauge field Aμ is holographically dual to
the current Ja of a global Uð1Þ. The parameters CJ and a2
associated to Ja were determined in [54], finding

CEQG
J ¼ ΓðdÞ

4πd=2þ1Γðd=2 − 1Þ
l2�L̃d−3

αeffG
; ð8Þ

aEQG2 ¼ −
2dðd − 1Þ½ð2d − 1Þα1 þ α2�f∞

ðd − 2Þαeff
; ð9Þ

where
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αeff ≡ 1 − f∞α1ð3d2 − 7dþ 2Þ − f∞α2ðd − 2Þ; ð10Þ

f∞ ≡ L2=L̃2, and L̃ is the AdSðdþ1Þ radius.
Now, the (charged) Rényi entropy across a spherical

entangling surface of radius R in the vacuum state can be
obtained, on general grounds, from the thermal entropy on
S1
2πR × Hd−1

R [3,26,30]. In the holographic context, the
calculation amounts to computing the thermal entropy of
an AdSðdþ1Þ hyperbolic black hole charged under the gauge
field at a temperature T0 ¼ 1=ð2πRÞ. For our theory,
Eq. (6), this takes the form

ds2 ¼ −L2

f∞R2

�
r2

L2
f − 1

�
dt2 þ dr2

r2

L2 f − 1
þ r2dΞ2;

H ¼ QωHd−1 ; ð11Þ

where dΞ2 is the metric of the unit hyperbolic space Hd−1
1

and ωHd−1 its volume form. The factor ðL2=f∞R2Þ has been
introduced so that the boundary metric is conformal to
ds2S1×Hd−1 ¼ −dt2 þ R2dΞ2. The equations of motion for
fðrÞ and its explicit form can be found in the Supplemental
Material [45]. The temperature of the black holes can be
written as

T¼ T0

2x
ffiffiffiffiffiffi
f∞

p ð1−2p2α1−2λx−2Þ
	
x2d−ðd−2Þ

þðd−4Þλ
x2

−
2p2

ðd−1Þ½x
2−dð3ðd−1Þα1þα2Þ�



; ð12Þ

where we introduced x≡ rþ=L, p≡QLr−dþ1
þ , and rþ is

the outer horizon position. We also need the value of the
chemical potential of the boundary theory. This is nothing
but the asymptotic value of the electrostatic potential At at
r → ∞, which is fixed by the condition that Atjrþ ¼ 0. We
find

μ¼ Lp
l�

ffiffiffiffiffiffi
f∞

p
R

�
x

ðd−2Þ−
α1
x

�
3ðd−1Þþ T

T0

2x
ffiffiffiffiffiffi
f∞

p �
−
α2
x

�
:

ð13Þ

Finally, we need the Wald entropy [81,82] of the solutions.
We obtain

S ¼ xd−1Ld−1VHd−1

4G

�
1þ 2p2α1 −

2ðd − 1Þλ
ðd − 3Þx2

�
; ð14Þ

where VHd−1 ≡ νd−1Ωd−1=ð4πÞ is the regularized volume of
the unit hyperbolic space. As explained earlier, this
computes the holographic charged entanglement entropy
when T ¼ T0. Observe that in the above expression, the
dependence on μ appears through x and p, so we would
need to obtain xðμÞ and pðμÞ from Eqs. (12) and (13)
evaluated for such temperature in order to obtain an explicit

formula for SunivEE ðμÞ. This cannot be done explicitly for
arbitrary values of μ, but it is possible for small values of
μR. The result for the first 2 orders reads

SEQGEE ðμÞ
νd−1

¼ a⋆GB

þ πðd−2Þ=2ðd− 2Þ2½1− 3dðd− 1Þα1f∞ − dα2f∞�
ðd− 1Þ8Γðd=2Þα2eff

×
L̃d−3l2�

G
ðμRÞ2 þOðμ4Þ; ð15Þ

where αeff was defined in Eq. (10). Now, the constant term
is the a⋆ charge for our EQG theory, which reduces to the
Gauss-Bonnet gravity 1, as terms involving the B form do
not contribute to it. Explicitly, this reads [42]

a⋆GB ¼ L̃d−1

8G
πðd−2Þ=2

Γðd=2Þ
�
1 −

2ðd − 1Þ
d − 3

λf∞

�
: ð16Þ

As mentioned earlier, this is the expected result for the
(uncharged) entanglement entropy across a spherical sur-
face in d dimensions. Now, the leading correction coming
from the chemical potential has a complicated nonpolyno-
mial dependence on the gravitational couplings α1, α2.
However, this conspires to produce a linear combination of
the charges CEQG

J and CEQG
J · aEQG2 . Indeed, using Eq. (9) it

is easy to see that the above formula reduces to Eq. (3). In
the Supplemental Material [45], we show that Eq. (3) in fact
holds for an infinite family of EQGs of general orders.
The fact that SunivEE ðμÞ takes this simple form for such a

large family of holographic theories leads us to think that
this may actually be a relation that holds for completely
general CFTs. Before proving that this is indeed the case,
we can perform an additional check in a completely
different context.
Free fields.—The result for the charged Rényi entropy

associated to global phase rotations for a Dirac fermion and
a scalar field in d ¼ 4 has been computed in [26] using
heat-kernel techniques. We review these calculations in the
Supplemental Material [45], where we also fix a typo in the
Dirac fermion result reported in [26]. The correct results
read, respectively,

Sfn ¼ ν3
24

�ð1þ nÞð7þ 37n2Þ
120n3

þ ð1þ nÞðμRÞ2
n

�
;

Ssn ¼
ν3
24

�ð1þ nÞð1þ n2Þ
60n3

þ ð1þ nÞðμRÞ2
2n

þ jμRj3
�
: ð17Þ

Interestingly, the exact dependence on μ is much simpler
than for our holographic theories, for which, as we saw
earlier, a completely explicit formula cannot be obtained. It
is then straightforward to obtain the result of interest for the
entanglement entropy expansion. One finds
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SfEEðμÞ
ν3

¼ a⋆f þ
ðμRÞ2
12

;

SsEEðμÞ
ν3

¼ a⋆s þ
ðμRÞ2
24

þ jμRj3
24

; ð18Þ

where a⋆f ¼ 11=360, a⋆s ¼ 1=360 are the trace-anomaly
coefficients corresponding to a Dirac fermion and a real
scalar field, respectively [83–85]. Now, the values of the
charges CJ and a2 for these two models are also well-
known and read [44,53,86,87]

Cf
J ¼ 1

π4
; Cs

J ¼
1

4π4
;

af2 ¼ −
3

2
; as2 ¼ 3: ð19Þ

It is then straightforward to verify that Eq. (18) satisfies the
relation Eq. (3).
General CFTs.—The previous results strongly suggest

that Eq. (3) holds for general CFTs. As it turns out, a proof
of such universality can be easily achieved using a
combination of the results presented in Ref. [26] along
with some thermodynamic identities. In order to do this, we
need to depart momentarily from the vacuum temperature
T0 and consider a CFT on the hyperbolic cylinder at an
arbitrary temperature T. The thermal entropy of a given
CFT in such state can be used to compute the Rényi entropy
SnðμÞ across a spherical entangling region [26,30], the
Rényi index being related to the temperature by n ¼ T0=T.
In order to proceed, we need to consider a set of related

quantities: the twist operators σnðμÞ. In the Replica trick
approach to the evaluation of Rényi and entanglement
entropy, the entangling region is cut from each of the
spacetime copies and consecutive copies are sewn together
along the entangling surface. Such boundary conditions can
be understood as produced by the insertion of (d − 2)-
dimensional operators along the entangling surface
[1,2,10,30]. In the charged Rényi and EE case, the entan-
gling surface carries a “magnetic flux,” −inμ, which can be
understood as attaching a Dirac sheet to the twist oper-
ators [26].
The leading divergence in the correlator of σnðμÞ with

the current operator defines the so called “magnetic
response” knðμÞ as [26]

hJaσnðμÞi ¼
iknðμÞ
2π

ϵabnb

yd−1
; ð20Þ

where y is the distance between the insertions, nb is a unit
vector normal to Ja from the twist operator insertion, and ϵab
is the volume form of the two-dimensional space orthogonal
to the entangling surface. In the case of a spherical
entangling surface, the magnetic response is given by [26]

knðμÞ ¼ 2πnRd−1ρðn; μÞ; ð21Þ

where ρðn; μÞ is the charge density of the CFT on the
hyperbolic cylinder at temperature T ¼ T0=n. As it turns
out, this quantity has a universal expansion around
n ¼ 1 and μ ¼ 0 whose leading terms can be expressed
in terms of the coefficients characterizing the hTJJi corre-
lator. We have [26]

knjn¼1;μ¼0 ¼ ∂nknjn¼1;μ¼0 ¼ 0;

∂μknjn¼1;μ¼0 ¼
16Rπdþ1

Γðdþ 1Þ ½ĉþ ê�;

∂n∂μknjn¼1;μ¼0 ¼
16Rπdþ1

dΓðdþ 1Þ ½2ĉ − dðd − 3Þê�; ð22Þ

where the charges ĉ, ê are related to CJ, a2 by [26,87]

ĉ ¼ CJðd − 2ÞΓðdþ2
2
Þ

2πd=2ðd − 1Þ3 ½dðd − 1Þ − a2�;

ê ¼ CJΓðdþ2
2
Þ

2πd=2ðd − 1Þ3 ½d − 1þ ðd − 2Þa2�: ð23Þ

Let us now consider the thermal entropy S of the CFTon
the hyperbolic cylinder. In the grand canonical ensemble,
the first law of thermodynamics reads

dΩ ¼ −SdT − Ndμ; ð24Þ

where Ω is the grand potential and N ¼ VHd−1Rd−1ρ is the
total charge. From the first law the following thermo-
dynamic relation can be obtained:

∂μS ¼ −∂μ∂TΩ ¼ −∂T∂μΩ ¼ ∂TN: ð25Þ

Writing N in terms of the magnetic response knðμÞ, and
using that ∂T ¼ −ðT0=T2Þ∂n, we have

∂μS ¼ −
T0VHd−1

2πT2
∂n

�
knðμÞ
n

�
: ð26Þ

Expanding the derivatives, evaluating for n ¼ 1 (T ¼ T0)
and μ ¼ 0 and using Eq. (22), it immediately follows that
the first derivative term vanishes, i.e.,

∂μSEEjμ¼0 ¼ 0: ð27Þ
Taking a second derivative with respect to μ in Eq. (26), we
have

∂
2
μS ¼ −

T0VHd−1

2πT2
∂μ∂n

�
knðμÞ
n

�
: ð28Þ

Evaluating again for n ¼ 1 (T ¼ T0) and μ ¼ 0, we have

∂
2
μSEEjμ¼0 ¼ RVHd−1 ½∂μkn − ∂μ∂nkn�jn¼1;μ¼0: ð29Þ
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Using then Eq. (22), we can rewrite this as

∂
2
μSEEjμ¼0 ¼ VHd−1

16ðd − 2ÞR2πdþ1

dΓðdþ 1Þ ½ĉþ dê�; ð30Þ

which, via Eq. (23), reduces to Eq. (3). This therefore
completes the proof that such relation is universally valid
for arbitrary CFTs.
Final comments.—Our formula, Eq. (3), holds for general

CFTs in d ≥ 3. In d ¼ 2, there are various reasons to expect
a different situation. On the one hand, observe that the
coefficienta2 is not even defined in that case. Similarly, from
Eq. (8) it is clear that CJ for our holographic calculations is
divergent for d ¼ 2 and therefore meaningless. The free-
field results reported in [26] also suggest a different structure
in that case, including possible linear terms in μ or jumps in
SnðμÞ as n and μ vary. Additional two-dimensional counter-
examples to the subleading quadratic behavior in μ have
appeared in [88]. It would be interesting to investigate these
features further—natural candidates would be three-dimen-
sional holographic EQGs [89].
On a different front, it would also be interesting to

rederive Eq. (3) using the techniques developed in [90]. In
the case of a small perturbation by a relevant operator O,
the leading correction to the EE across a sphere was shown
to be quadratic in the perturbation and proportional to a
double integral of hKOOi − hOOi, whereK is the modular
Hamiltonian of ρA, which for spheres involves an integral
of the stress tensor. In the present context, it would be
natural to relate O to the charge operator, which would
bring about integrals of hTJJi and hJJi, precisely as
expected from Eq. (3).
In [91], a somewhat similar universal relation for charged

Rényi entropies involving the uncharged result plus an
extra term was obtained in the case of discrete symmetry
groups. It would be nice to study the connection between
Eq. (3) and the approach developed in that paper and [92] in
the case of continuous groups.
A particularly interesting application of our formula is to

the case of supersymmetric CFTs (SCFTs), which come
with a global R-symmetry group. For instance, for d ¼ 4,
N ¼ 1 SCFTs, one has a Uð1ÞR current with [53,93,94]

CN¼1;Uð1ÞR
J ¼ 4c

π4
; aN¼1;Uð1ÞR

2 ¼ 3

�
1 −

a
c

�
; ð31Þ

and therefore, our formula, Eq. (3), yields the prediction

SN¼1;Uð1ÞR
EE ¼ ν3

�
aþ 2

3

�
c −

a
3

�
ðμRÞ2 þ…

�
; ð32Þ

where we used a⋆ ¼ a and c is the other trace-anomaly
coefficient. Similarly, for N ¼ 2 SCFTs, the R-symmetry
group is Uð1ÞR × SUð2ÞR. Using the corresponding values
of CJ and a2 [95,96], one finds [97]

SN¼2;Uð1ÞR
EE ¼ ν3

�
aþ 2

�
c −

a
3

�
ðμRÞ2 þ…

�
;

SN¼2;SUð2ÞR
EE ¼ ν3

�
aþ 1

6
ð2c − aÞðμRÞ2 þ…

�
: ð33Þ

It would be interesting to verify these predictions using
alternative methods.
Finally, it is natural to wonder what additional relations

connecting quantum information measures and universal
CFT quantities may still remain to be discovered.
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entropy and a general calculation of the charged Rényi
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