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Dark sectors provide a compelling theoretical framework for thermally producing sub-GeV dark matter,
and motivate an expansive new accelerator and direct-detection experimental program. We demonstrate the
power of constraining such dark sectors using the measured effective number of neutrino species, Neff ,
from the cosmic microwave background (CMB) and primordial elemental abundances from big bang
nucleosynthesis. As a concrete example, we consider a dark matter particle of arbitrary spin that interacts
with the standard model via a massive dark photon, accounting for an arbitrary number of light degrees of
freedom in the dark sector. We exclude dark matter masses below ∼4 MeV at 95% confidence for all dark
matter spins and dark photon masses. These bounds hold regardless of additional new light, inert degrees of
freedom in the dark sector, and for dark matter-electron scattering cross sections many orders of magnitude
below current experimental constraints. The strength of these constraints will only continue to improve
with future CMB experiments.
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Introduction.—The exquisite precision of the cosmic
microwave background (CMB) and big bang nucleosyn-
thesis (BBN) measurements has historically played an
important role in constraining the properties of dark matter
(DM) [1–15]. The introduction of new particles in the dark
sector can affect the expansion rate of the Universe, as well
as the temperature of standard model (SM) particles,
thereby leaving distinctive signatures on both elemental
abundances and the effective number of neutrino species,
Neff . In this Letter, we demonstrate how to compute joint
CMB and BBN constraints for generic dark sectors, using
the example of a sub-GeV DM species accompanied by a
massive dark photon and an arbitrary number of light, inert
degrees of freedom.
Joint CMB and BBN constraints have been obtained for a

single DM particle in thermal equilibrium with the SM at
early times [7–10,13–17]. For example, Refs. [14,15] find
that an electromagnetically coupled DM particle must have
mass mχ ≳ 5 MeV at 95% confidence, depending on its
spin. However, the need for joint constraints is more
significant for dark sectors. This was underscored by
Refs. [8,11,17], which obtained joint CMB and BBN con-
straints for electromagnetically coupled DM accompanied

by additional relativistic degrees of freedom in the dark
sector. In this model, CMB-only constraints cannot break
the degeneracy between DM entropy injection—which
heats photons relative to neutrinos after neutrino decou-
pling, leading to a lower value of Neff—and new inert,
relativistic degrees of freedom. Primordial elemental abun-
dances are affected in different ways by the radiation energy
density and the neutrino temperature during BBN, and can
therefore break this degeneracy.
Beyond these simple models, CMB and BBN constraints

have the potential to play an important role in our under-
standing ofwell-motivated dark sectors,many ofwhich yield
viable thermal relics in the keV–GeV mass range (see, e.g.,
Refs. [18–36]). These dark sectors commonly have multiple
states that interact with the SM through portal interactions,
which need to be properly accounted for when determining
the joint CMB and BBN constraints. Furthermore, new
numerical methods [37,38] now allow for such joint con-
straints to be calculated with the inclusion of many poten-
tially important effects, including noninstantaneous neutrino
decoupling and BBN nuclear rate uncertainties.
We focus on a scenario where the DM particle χ couples

to a massive U(1)’ dark photon A0 that is kinetically mixed
with the SM photon. We also include the possibility of new
inert, relativistic degrees of freedom, which has been used
to avoid CMB-only Neff constraints due to the aforemen-
tioned degeneracy with DM entropy injection (see, e.g.,
Refs. [7,10,39–41]). This model is one of the standard
benchmarks for the nascent experimental program for the
direct detection of DM-electron scattering [42].
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Using the 2018 Planck results [43], as well as the
primordial elemental abundances from Refs. [44,45], we
robustly constrain the DM massmχ as a function of its spin
and the dark photon mass mA0 . For example, when
mA0=mχ ¼ 3, we exclude complex scalar (Dirac fermion)
DM below mχ ∼ 5.2 MeV (7.9 MeV) at 95% confidence
for DM-electron scattering cross sections that are many
orders of magnitude below current constraints. These
results apply regardless of the number of inert, relativistic
degrees of freedom in the model, thereby circumventing a
key weakness of previous cosmological constraints of
this kind. They will also strengthen with future CMB
measurements.
Methodology.—We compute the effect of a dark sector

model with parameters θ on the effective number of
relativistic degrees of freedom at late times, Neff . For
our benchmark model,

Neff ¼ 3
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Here, Tγ and Tν are the photon and neutrino temperatures,
respectively, andΔNν is the ratio of the energy density ρξ of
inert, relativistic degrees of freedom ξ in the dark sector to
that of a single neutrino at late times, taking ρξ ∝ a−4

throughout cosmic history. The benchmark model consists
of two free parameters,mχ andΔNν;mA0 is set as a constant
multiple of mχ . The subscript “0” denotes a late point in
time when Tγ ≪ mχ , mA0 , and me, the electron mass. As
demonstrated by Eq. (1), annihilations that preferentially
inject entropy into the photon bath decrease Neff relative to
the standard cosmological value. This decrease, which
depends on mχ , can be compensated for by increasing
ΔNν. Appendix A in the Supplemental Material reviews
how dark sectors impact Tγ and Tν [46].
We also determine the effect of the dark sector on the

primordial abundances of elements after BBN has ended.
We only consider YP and D/H, the ratio of the abundance
by mass of helium-4 and the ratio of the abundance of
deuterium to hydrogen, respectively; extending the analysis
to other elements is straightforward. We compute YP and
D/H for a given dark sector model over the range
Ωbh2 ∈ ½0.0218; 0.0226�—much broader than the Planck
uncertainty on this parameter [43]—since the production of
light elements is highly sensitive to the baryon-to-photon
ratio [8].
These calculations were performed using the public

codes nudec_BSM [12,37] and PRIMAT (we use the latest
version of PRIMAT [53], which includes the recently
updated measurement of the Dþ p → 3Heþ γ cross sec-
tion [54]) [38,53], which we modify to include a DM
particle (of arbitrary spin), a dark photon, and ΔNν. Our
modified nudec_BSM first computes Tγ and Tν, as well
as the Hubble rate and scale factor as functions of time,

self-consistently including the effects of noninstantaneous
neutrino decoupling and QED corrections [12,37]. The
nudec_BSM output is then used by our modified version of
PRIMAT to obtain an accurate prediction of the elemental
abundances. This method can be easily extended to any
arbitrary dark sector.
To assess the consistency of the computed NeffðθÞ,

YPðθ;Ωbh2Þ, and D=Hðθ;Ωbh2Þ with CMB and BBN
measurements, we perform a hypothesis test on our model
parameters by constructing a profile likelihood ratio.
Explicitly, we define

Lðθ;Ωbh2Þ ¼ LBBNðθ;Ωbh2ÞLCMBðθ;Ωbh2Þ; ð2Þ

where L is the Gaussian likelihood of the parameters θ and
Ωbh2. The contribution from the CMB measurements,
LCMB, is computed using the central values and covariance
matrix from Planck for a fit with the sixΛCDM parameters,
plus Neff and YP [43,55], with

Neff ¼ 2.926� 0.286: ð3Þ

For comparison, we also show projected results for the
upcoming Simons Observatory [56].
The contribution from BBN, LBBN, is computed using

the central values of the observed elemental abundances,
and a covariance matrix that combines experimental and
theoretical uncertainties. The measured values and uncer-
tainties of YP [44] and D/H [45] are

YP ¼ 0.245� 0.003;

D=H ¼ ð2.527� 0.030Þ × 10−5: ð4Þ

Theoretical uncertainties and correlations between pre-
dicted YP and D/H values arise from uncertainties in
nuclear rates. The D/H theoretical uncertainty varies with
both θ and Ωbh2, and can be comparable to or even exceed
the measurement uncertainty; it is therefore evaluated at
each parameter point. We compute the theoretical uncer-
tainty and correlations of both D/H and YP by varying the
nuclear rates by 1σ, and adding the resulting fractional
variations to the abundances in quadrature. Finally, both
theoretical and measurement uncertainties are added in
quadrature to obtain the full BBN covariance matrix.
Further details on this procedure are provided in
Appendix B of the Supplemental Material [46].
We then calculate the profile likelihood ratio λpðθÞ ¼

LpðθÞ=L̂p, where LpðθÞ ¼ maxΩbh2 Lðθ;Ωbh2Þ and

L̂p ¼ maxθ;Ωbh2 Lðθ;Ωbh2Þ. By Wilk’s theorem, the quan-
tity −2 log λpðθÞ follows a chi-squared distribution with
degrees of freedom given by the number of model param-
eters [44]. Sixty-eight (ninety-five) percent confidence
limits for θ in our two-parameter benchmark model are
therefore set when −2 log λpðθÞ ¼ 2.30ð6.18Þ.
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Dark photon model constraints.—Figure 1 illustrates the
interplay between CMB and BBN measurements in con-
straining a complex scalar χ and a dark photon with
mA0 ¼ 3mχ . The purple (pink) lines correspond to the
constraints on mχ and ΔNν that are consistent with the
Planck (projected Simons Observatory) measurements.
Above mχ ∼ 20 MeV, the predicted value of Neff

approaches the standard cosmological value because the
DM freezes out well before neutrino decoupling, and so the
DM annihilations heat the electromagnetic and neutrino
sectors equally.
The impact of the dark sector becomes apparent when

mχ ≲ 20 MeV, and entropy is injected into the electro-
magnetic sector during and after the period of neutrino
decoupling, when the SM bath has a temperature of
Tνd ∼ 2 MeV. In this case, Neff decreases relative to the
standard value because the electromagnetic sector is
preferentially heated, but the photon temperature today
is fixed at its measured value of 2.7 K. A nonzero ΔNν can
restore Neff to its measured value; when mχ falls below
∼20 MeV, the fit clearly prefers a largerΔNν to explain the
observed value of Neff . Below mχ ≲ 1 MeV, the DM is
relativistic throughout neutrino decoupling; entropy is
dumped only into the electromagnetic sector regardless
of mass, and the constraints level off (Fig. 1 inset).
The result of including BBN constraints from YP and

D/H is indicated by the shaded regions in Fig. 1. BBN
clearly adds significant discriminating power, placing a
95% lower confidence bound on the DM mass of

mχ ∼ 5 MeV when combined with Planck data, regardless
of ΔNν. The Simons Observatory will have improved
sensitivity to mχ with its more precise measurement of
Neff , while also reducing the uncertainty on ΔNν.
The introduction of an MeV-scale DM particle and dark

photon leads to a variety of effects on BBN physics, which
are summarized in Fig. 2 for fixed Ωbh2 ¼ 0.022358. The
solid (dashed) colored lines correspond to different ratios of
mA0=mχ for ΔNν ¼ 0 (1). The case where mA0=mχ → ∞ is
consistent with Refs. [1,3,7,8]. The interplay of the
following four quantities is relevant for understanding this
behavior: (i) the neutron-proton ratio, which is positively
correlated with the helium-4 abundance, (ii) the baryon-to-
photon ratio η, which is inversely correlated with the
deuterium abundance, (iii) the expansion rate, which
impacts both the neutron abundance and the deuterium
burning rate [57], and (iv) the rate of neutron-proton
interconversion, affected by a modified Tν (at fixed Tγ).
When mχ ≳ 3Tνd, BBN proceeds as per the standard
scenario. When me ≲mχ ≲ 3Tνd, DM injects significant
entropy into the electromagnetic sector after neutrino
decoupling. The expansion rate is therefore slower at fixed
photon temperature, which drives down the deuterium
abundance as there is more time to convert deuterium to
heavier elements. Meanwhile, near-cancellation of effects
on neutron-proton interconversion and on the expansion
rate keeps YP essentially constant in this regime [8]. When
mχ ≲me, the DM acts as a new relativistic species during
BBN. This increases the expansion rate, causing weak
interactions to decouple earlier, thereby increasing YP. In
contrast, D/H is further reduced because post-BBN DM
annihilations lead to an increased η during BBN
ΔNν > 0 compounds the effect of introducing an MeV-

scale DM particle by further increasing the expansion
rate. This increases the production of helium-4 and miti-
gates the decrease in the deuterium abundance. As a result,
an increase in ΔNν shifts the ΔNν ¼ 0 curves in Fig. 2
upward.
As mA0=mχ is reduced, the effects described above are

only further enhanced because of the additional entropy
injection from the dark photon. In particular circumstances,
the presence of the dark photon can qualitatively affect the
shape of the D/H and YP curves in Fig. 2. For example, the
mA0=mχ ¼ 10 curve exhibits distinctive behavior when
mχ ≲me. The observed plateau in D/H corresponds to
the transition from the point where the dark photon entropy
injection heats the photon bath, to the point where the dark
photon acts as an additional relativistic species throughout
BBN. Elsewhere, the curves for different values of mA0=mχ

look similar, but the curves shift to the right as mA0=mχ

decreases, since the entropy injection from the dark photon
increases as mA0 decreases.
The current measurements of D/H and YP are indicated

in Fig. 2. For the case where mχ → ∞, we find a ∼2σ

FIG. 1. The allowed region of dark matter mass mχ and ΔNν,
for a complex scalar particle and a dark photon with mass 3mχ .
The inset shows the same contours over a larger range of mχ and
ΔNν. The purple (pink) lines denote the Planck (projected
Simons Observatory) Neff 68=95% confidence regions. The
corresponding shaded regions correspond to the bounds includ-
ing BBN measurements. The BBN measurements clearly play a
powerful role in setting the lower limit on the dark matter mass,
even when ΔNν > 0 is allowed. The value of Ωbh2 that max-
imizes the likelihood was chosen for each parameter point.
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discrepancy with the measured deuterium abundance from
Ref. [45], consistent with other studies using PRIMAT.
References [58,59], which perform independent analyses
with different code packages, find better agreement with
larger uncertainties. These differences are likely due, at
least in part, to differing treatments of the 2D → 3Heþ n
and 2D → 3H þ p reactions [53,59]. The method pre-
sented in this Letter can be easily adapted to account for
future improvements in BBN calculations.
Table I enumerates the 95% confidence lower bound on

mχ for a complex scalar, a Majorana fermion, and a Dirac
fermion for different values of mA0=mχ . In all cases, the
minimum mass is constant for mA0=mχ ≳ 10 and is a factor
of 1.3–1.8 weaker than joint CMB and BBN limits
assuming ΔNν ¼ 0 [15]. We find a robust lower bound

of mχ > 3.9 MeV across all DM particle types, for any
nonzero ΔNν, using Planck data [43]. The Simons
Observatory will be sensitive to heavier masses by
several MeV.
The lower bound on mχ has important implications for

experiments searching for dark sector DM. Our benchmark
model is commonly used to present bounds and sensitivity
projections for direct-detection and accelerator-based
experiments. To date, the generality of CMB Neff limits
on this model has been questioned due to the degeneracy
between DM entropy injection and ΔNν [7,10,39–41].
Because our joint CMB and BBN constraints apply for any
ΔNν > 0, they address these prior concerns and establish a
robust cosmological bound on the dark sector model under
consideration.
We present our results in Fig. 3 for mA0 ¼ 3mχ in terms

of the reference DM-electron scattering cross section,
σ̄e ≡ 16πααDϵ

2μ2χe=ðα2m2
e þm2

A0 Þ2, where α, αD are the
electromagnetic and dark sector fine structure constants
respectively, ϵ is the SM-A0 mixing parameter, and μχe is
the electron-χ reduced mass. We show the lower limit on
mχ for a Dirac fermion and a complex scalar, together with
existing direct-detection [60–65] and accelerator [66–71]
limits on σ̄e, assuming χ makes up all of the DM for direct-
detection experiments, and choosing αD ¼ 0.5 for beam
experiments. We solve the Boltzmann equation for χ with
the processes χχ̄ ↔ eþe− and μþμ− to obtain (i) σ̄e as a
function of mχ for a symmetric complex scalar χ under-
going a standard freeze-out through annihilation into SM
fermions and (ii) the lower limit on σ̄e as a function of mχ

for an asymmetric Dirac fermion χ freezing out through
annihilation into SM fermions, given the Planck limits on

FIG. 2. Predictions for D/H (left) and YP (right) for a complex scalar particle χ of mass mχ . The solid (dashed) lines correspond to
ΔNν ¼ 0ð1Þ. The results are shown for five different ratios of dark photon to DM mass: mA0=mχ ¼ 0.5, 1, 3, 10, and approaching ∞ in
red, orange, green, blue, and purple, respectively. The 1 and 2σ uncertainties on the measured values of D/H [45] and YP [44] are
indicated by the gray horizontal bands. The standard cosmology predictions for D/H and YP are consistent with the results in Ref. [53].
Ωbh2 is fixed to 0.022358.

TABLE I. The joint Planck CMB and BBN 95% lower limit on
the mass of a DM particle that is a complex scalar, Majorana
fermion, or Dirac fermion in our benchmark model. The mass
limits are provided for different ratios of the dark photon to DM
mass. The values in parentheses are the projected Simons
Observatory and BBN constraints [14,56]. The value of Ωbh2

that maximizes the likelihood was chosen for each parameter
point.

Minimum mχ (MeV)

mA0=mχ Complex Scalar Majorana Fermion Dirac Fermion

0.5 14.3 (16.5) 14.3 (16.5) 15.2 (17.1)
1 9.0 (10.1) 9.0 (10.1) 10.4 (11.5)
1.5 7.1 (8.1) 7.1 (8.0) 9.0 (10.0)
3 5.2 (6.2) 5.0 (6.1) 7.9 (9.1)
≥ 10 4.3 (5.8) 4.0 (5.6) 7.8 (9.1)
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DM annihilation [43,72,73] (see, e.g., Refs. [41,74,75] for
similar relic abundance calculations). The joint constraints
set a lower limit of mχ > 5.2 MeV (7.9 MeV) for a
complex scalar (Dirac fermion) χ with an arbitrary number
of light degrees of freedom at 95% confidence. The Simons
Observatory [14,56] is forecasted to have slightly improved
sensitivity.
Our limits apply only for dark sectors in chemical

equilibrium with the SM while A0 is relativistic, where
our entropy injection calculation is valid. In the early
Universe, processes such as χχ̄ ↔ eþe− bring the dark
sector into chemical equilibrium with the SM while Tγ ≳
mA0 for sufficiently large σ̄e. We estimate this σ̄e by
requiring the rate of eþe− → χχ̄ to exceed the Hubble rate
at Tγ ¼ mA0 , and find σ̄e ≳ 10−46 cm2ð10 MeV=mχÞ3.
Conclusions.—We have developed a method for

obtaining joint CMB and BBN constraints on general dark
sectors. As a concrete example, we focused on the dark
sector model where a DM particle interacts with the SM
through a massive dark photon mediator, including the
possibility of an arbitrary number of light degrees of
freedom. We place a 95% confidence lower bound of mχ ≳
4 MeV on the DM mass as long as the dark sector is fully

thermalizedwith the SM in the earlyUniverse. In Table I, we
also illustrate how the constraints strengthen with decreas-
ing dark photon mass. Recent studies have identified
cosmological and astrophysical probes of χe → χe scatter-
ing [76,77], resulting in constraints on σ̄e that are many
orders of magnitude weaker than the range plotted in Fig. 3
(e.g., σ̄e ≳ 10−30 cm2 for mχ ¼ 1 MeV). Thus, for the
example of mχ ¼ 1 MeV, our constraints are expected to
apply between 10−43 cm2 ≲ σ̄e ≲ 10−30 cm2, above which
χe → χe becomes important. To our knowledge, there are no
existing models of electrophilic DM that completely evade
our bounds, though model-building extensions have been
proposed for other scenarios that can weaken the CMB Neff
constraints and allow for 1–10 MeV electromagnetically
coupled dark sector particles, e.g., by allowing some DM
annihilation into neutrinos [12,14,78]. We hope to better
understand the robustness of these cosmological limits on
generic dark sectors in future work.
Appendices C and D in the Supplemental Material [46]

describe the modifications made to nudec_BSM and
PRIMAT to handle the dark sector model studied in this
Letter. The modified code is available upon request from
the authors.
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