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Recent experimental observation of weak ergodicity breaking in Rydberg atom quantum simulators has
sparked interest in quantum many-body scars—eigenstates which evade thermalization at finite energy
densities due to novel mechanisms that do not rely on integrability or protection by a global symmetry.
A salient feature of some quantummany-body scars is their subvolume bipartite entanglement entropy. In this
Letter, we demonstrate that such exact many-body scars also possess extensive multipartite entanglement
structure if they stem from an su(2) spectrum generating algebra.We show this analytically, through scaling of
the quantum Fisher information, which is found to be superextensive for exact scarred eigenstates in contrast
to generic thermal states. Furthermore, we numerically study signatures of multipartite entanglement in the
PXP model of Rydberg atoms, showing that extensive quantum Fisher information density can be generated
dynamically by performing a global quench experiment. Our results identify a rich multipartite correlation
structure of scarred states with significant potential as a resource in quantum enhanced metrology.
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Introduction.—Beyond fundamental importance in
quantum information theory [1], entanglement now plays
a central role in many-body physics [2–4]. For example, the
finite-size scaling of bipartite entanglement allows one to
deduce important information on critical scalings in many-
body systems [5], and through the identification of area and
volume law behavior it can tell us about the feasibility of
classical simulation. Entanglement is also central to the
foundations of statistical mechanics [6]. Because of
advances in experimental ultracold atomic physics, signifi-
cant effort has been made to understand how quantum
systems thermalize in the long-time limit [7–9].
Thermalizing systems which obey the eigenstate thermal-
ization hypothesis (ETH) [8,10–12] have eigenstates that
obey a volume law entanglement entropy. This agrees with
common intuition that the highly excited energy eigenstates
of many body systems are close to random vectors in the
Hilbert space and as such should be highly entangled [13].
Volume-law bipartite entanglement entropy, therefore, is
ubiquitous in nature. Unfortunately, this structure of bipar-
tite entanglement is not known to lead to any practical
advantage for quantum-enhanced technologies.
There are many facets to entanglement theory and, in

particular, many-body systems offer the perfect playground
to explore multipartite entanglement. In this Letter we
focus on the multipartite structure in the eigenstates of
complex many-body systems as described by the quantum
Fisher information (QFI) [14–16]. The latter quantifies the
usefulness of the quantum state as a resource for quantum
enhanced metrology and can be directly related to

multipartite entanglement [17–19]. One particularly
appealing feature of QFI is its relation to thermal suscep-
tibilities [20–22], hence its experimental accessibility in
condensed matter physics [20,23]. In fact, when computed
for a thermal canonical Gibbs state the QFI can be written
directly in terms of a Kubo response function [20]. This has
led to experiments with neutron scattering [24,25] and
experimental proposals in atomic platforms [26]. One may
then ask the question, are there eigenstates of local many-
body systems with an entanglement structure that could
have operational significance for quantum information
processing?
In this Letter, we demonstrate that systems with weak

ergodicity breaking, possessing eigenstates known as
quantum many-body scars (QMBS) [27,28], naturally
realize a nontrivial form of extensive multipartite entangle-
ment. QMBS are ETH-violating eigenstates which span a
subspace that is effectively decoupled from the thermaliz-
ing bulk of the spectrum of a nonintegrable many-body
system [29–31]. Such subspaces have been shown to arise
due to several complementary mechanisms, including
Hilbert space fragmentation [32–36] and projector embed-
ding [37–40]. In this Letter, we focus on a large class of
QMBS arising due to su(2) spectrum generating algebras
[41–52]. The latter mechanism gives rise to an extensive
number of QMBS eigenstates with equal energy spacing,
leading to robust quantum revivals, usually from a simple
product state. The su(2) QMBS are naturally realized in the
so-called PXP spin model [53–59], in which signatures
of QMBS have been observed experimentally [60,61].
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While previous studies of QMBS have focused extensively
on their bipartite entanglement, demonstrating an ETH
violation via the subvolume law entanglement entropy, the
study of multipartite entanglement of QMBS has so far
been lacking. We show that exact su(2) QMBS have QFI
that scales superextensively with system size, in contrast to
generic thermal states of locally interacting Hamiltonians.
Furthermore, remnants of this nontrivial scaling can be
detected using dynamical quench experiments in systems
with approximate QMBS, as we demonstrate numerically
using the PXP model of Rydberg atoms [27]. As the QFI is
related to the well-known response functions in condensed
matter physics [20–22], this provides an opportunity for
detection of multipartite entanglement in experiment and
applications in quantum-enhanced sensing [62].
Quantum Fisher information and multipartite

entanglement.—The QFI, FQ, is a central concept in
quantum metrology that sets ultimate bounds on the
precision on the estimation of a parameter [63]. The general
goal is to estimate an unknown parameter λ using a
quantum state ρ̂. By performing a quantum measurement
protocol, one finds the precision is constrained by the
quantum Cramér-Rao bound ðΔλÞ2 ≥ 1=MFQðρ̂λÞ, where
M is the number of independent measurements made in the
protocol, ρ̂λ is the state parametrized by λ, and Δλ is the
variance [69,70]. The FQ admits an exact expression when
the state ρ̂λ is generated by some Hermitian operator Ô such
that ρ̂λ ¼ eiλÔρ̂e−iλÔ. For a general mixed state, described
by the density matrix ρ̂ ¼ P

n pnjnihnj, it reads [69]

FQðÔ; ρ̂Þ ¼ 2
X
n;m

ðpn − pmÞ2
pn þ pm

jhnjÔjmij2≤ 4hΔÔ2i; ð1Þ

with hΔÔ2i ¼ Trðρ̂Ô2Þ − Trðρ̂ ÔÞ2. The equality holds for
pure states ρ̂ ¼ jψihψ j.
The QFI has key mathematical properties [15,69–71],

such as convexity, additivity, monotonicity, and it can be
used to probe the multipartite entanglement structure of a
quantum state [17–19]. If, in a system with N particles and
for a certain collective operator Ô ¼ 1

2

P
N
i¼1 ôi (extensive

sums of operators ôi with local support), the QFI density
satisfies the inequality

fQ ≡ FQðÔ; ρ̂Þ
N

> m; ð2Þ

then, at least (mþ 1) parties in the system are entangled
(with 1 ≤ m ≤ N − 1 a divisor of N). Namely,m represents
the size of the biggest entangled block of the quantum state.
In particular, ifN − 1 ≤ fQðÔÞ ≤ N, then the state is called
genuinely N-partite entangled.
QFI of thermal eigenstates.—In general, different oper-

ators Ô lead to different bounds on QFI and there is no
systematicmethod (without some knowledge on the physical

system [20,72]) to choose the optimal one. In this work, we
restrict ourselves to one-dimensional systems and collective
operators Ô ¼ 1

2

P
N
i¼1 ôi, which are typically explored in

cold-atom experiments and in interferometric schemes [70].
For the eigenstates jEni, the QFI with respect to such
collective operators FQðÔ; jEniÞ ¼ 4hEnjΔÔ2jEni can be
expressed in terms of the connected correlation func-
tions Gi;jðEnÞ≡ hEnjôiôjjEni − hEnjôijEnihEnjôjjEni. If
we further assume translational invariance, then Gi;j ¼
Gji−jj and the QFI density (2) reads

fQðÔ; jEniÞ ¼ G0ðEnÞ þ 2
XN−1

r¼1

GrðEnÞ: ð3Þ

Note that G0ðEnÞ ¼ Oð1Þ is always an intensive quantity
[73], hence the scaling of fQ depends on the behavior of
GrðEnÞ as a function of the distance r.
We now study the scaling of the QFI density (3) for

generic chaotic eigenstates of a locally interacting many-
body Hamiltonian far from criticality, which are well
known to obey ETH [12]. In this case, the connected
correlation functions scale as

GrðEnÞ ∼ cre−r=ξ; r ≫ ξ; ð4Þ

where jcrj ¼ Oð1Þ is an intensive constant that depends on
the operators and ξ is the correlation length at energy En.
This is a consequence of the clustering property of
connected correlation functions of local observables, which
has been demonstrated for canonical thermal states [74].
Appealing to ETH [75], the same clustering property holds
for eigenstates of local Hamiltonians up to subextensive
corrections [76]. The decay of correlations in Eq. (4) holds
despite the volume-law entanglement entropy of the eigen-
states [77–79], see the discussion in [63] and Refs. [54,80]
for numerical examples.
By plugging Eq. (4) into Eq. (3) and summing over r,

we obtain for N ≫ 1

fQðÔ; jEniÞ≲G0ðEnÞ þ
2c

e1=ξ − 1
þOðe−NÞ; ð5Þ

where we have used jcrj ≤ c ¼ Oð1Þ. This equation shows
that generically the QFI density of chaotic eigenstates,
away from criticality, is an intensive quantity that can be
evaluated explicitly from the knowledge of the thermal
correlation length. Furthermore, whenever the correlation
length ξ is large (but finite), one has

fQðÔ; jEniÞ ≃ 2ξ for ξ ≫ 1: ð6Þ

Thus, the QFI is also large and finite. By comparing this
expression with the relation to multipartite entanglement
(2), we find that the size of the biggest entangled block
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scales as twice the correlation length. This finding is fully
consistent with known results for critical pure or thermal
states, where the QFI for the order parameter diverges
universally [20,22,81–84].
As a side note, the above result for pure chaotic

eigenstates satisfying ETH can be compared with that
for QFI of thermal states [20] (or the asymptotic state of a
quenched dynamics). In the latter case, the QFI bounds
from above the corresponding canonical expression the
Gibbs state F ðÔ; jEiÞ ≥ F ðÔ; ρ̂GibbsÞ [22].
QFI of exact scars.—We next contrast the scaling of the

QFI for thermal eigenstates (5) to the one for a class of
exactQMBS. More precisely, we focus our work on scarred
eigenstates that can be described within the general
framework of Mark, Lin, and Motrunich [43] (see also
Ref. [44]). Whenever there exists a linear subspaceW ⊂ H
of the Hilbert space and an operator Q̂† such that Q̂†W ⊂ W
and

ð½Ĥ; Q̂†� − ωQ̂†ÞW ¼ 0; ð7Þ

then the Hamiltonian admits the following exact eigenstates
jSni and corresponding eigenvalues En,

jSni ¼ ðQ̂†ÞnjS0i; En ¼ E0 þ nω; ð8Þ

where jS0i is an eigenstate of the Hamiltonian Ĥ with
eigenvalue E0. In other words, Q̂

† is a dynamical symmetry
of the Hamiltonian restricted to the subspace W. The
specific form of the operator Q̂† is model dependent.
Typically, it is a collective operator with momentum π,
e.g., in one dimension Q̂† ¼ P

N
i¼1ð−1Þiôi with ôi an

operator with local support [43]. Note that Eq. (8) implies
equal energy spacing among the scarred eigenstates, and so
any state that would have overlap only on these states
would show perfect wave function revivals. Let us define

Ĵþ ≡ Q̂†

2
; Ĵ− ≡ Q̂

2
; Ĵz ≡ Ĥ

ω
; ð9Þ

which forms the Cartan-Weyl basis of an su(2) algebra.
We will use the following notation Â ¼w B̂ meaning that
the equality holds only on the subset W (8). For instance,
Eq. (7) reads ½Ĵz; Ĵ�� ¼w �Ĵ�.
Depending on how the algebra is completed, one may

obtain different results on the scaling of correlations. If, for
instance, one has ½Ĵþ; Ĵ−�w ¼ 1—the standard algebra
of the harmonic oscillator—then Ĵ� act like creation and
annihilation operators, while ĴþĴ− acts as a number
operator. It follows

hSnjĴþĴ−jSni
N2

¼ 1

N
n
N
; ð10Þ

and there cannot be any long-range order. Suppose, instead,
that the operators Ĵ obey

½Ĵþ; Ĵ−� ¼w 2Ĵz: ð11Þ

For such an algebraic structure one can show [63]

hSnjĴþĴ−jSni
N2

¼ 2ϵ0
ω

n
N
−
�
n
N

�
2

þ n
N2

; ð12Þ

where ϵ0 is the ground state energy density, i.e.,
E0 ¼ −Nϵ0. As n ¼ 0 to N, the first two terms are Oð1Þ
while the last one is only Oð1=NÞ.
Hence, exact scars with finite energy density

[n=N ¼ Oð1Þ] possess long-range order [85]. As such,
for the local operators ôi appearing in Q̂†, the connected
correlation functions are finite in the thermodynamic
limit (13), i.e.,

GrðEnÞ ∼ const; r → ∞; N → ∞: ð13Þ

This property was used in Ref. [54] to interpret scarred
eigenstates as finite-energy-density condensates of weakly
interacting π magnons that possess long-range order in
both space and time. A key result of our findings is that,
through Eq. (3), the presence of long-range order implies
genuine multipartite entanglement of this class of QMBS.
In fact, the QFI density with respect to the operators
Ĵx ¼ ðĴþ þ Ĵ−Þ=2 reads

fQðĴx; jSniÞ ¼ 2

�
2ϵ0
ω

−
n
N

�
nþ 2ϵ0

ω
; ð14Þ

where we used hSnjĴxjSni ¼ hSnjðĴ�Þ2jSni ¼ 0 to get rid
of all terms except the ones in Eq. (12). Therefore exact
scars with finite energy density n ∼ N possess superexten-
sive QFI FQ ∼ N2 and they are genuinely multipartite
entangled. In general, it is highly nontrivial to engineer
superextensive scaling of quantum Fisher information for
many-body states [71]. The identification of such states as a
subspace in the spectrum of physical, locally interacting
systems is our central result.
Experimental implications for Rydberg atoms.—

Signatures of QMBS have been observed in experiments
on Rydberg-blockaded atomic chains [60] and Bose-
Hubbard quantum simulators [61]. Denoting by j∘i and
j•i the ground and excited states of each atom, respectively,
the effective “PXP”Hamiltonian describing such systems is
given by [86,87]

Ĥ ¼ Ω
X
j

P̂j−1X̂jP̂jþ1; ð15Þ

where X̂ ¼ j∘ih•j þ j•ih∘j is the Pauli operator, P̂ ¼
j∘ih∘j is the projector on the ground state of an atom,
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and Ω is the Rabi frequency. We also assume periodic
boundary conditions. The Hamiltonian in Eq. (15) is
compatible with the Rydberg blockade constraint as it
allows an atom to change state only if both of its neighbors
are in the ground state, thus neighboring excitations such as
j� � � •• � � �i are excluded.
While the model in Eq. (15) is nonintegrable and

thermalizing [27], when quenched from the Néel product
state of atoms, jZ2i ¼ j•∘•∘ � � �i, long-lived oscillations
are seen in the dynamics of entanglement entropy and local
observables [27,53,60]. This is despite the jZ2i state being
effectively at “infinite temperature.” The origin of these
oscillations is a set of N þ 1 QMBS eigenstates [27] that
form an approximate su(2) algebra [88,89]. However, this
algebra is only approximate, hence Eq. (7) is not exactly
obeyed; moreover, the algebra involves nonlocal genera-
tors, hence it is not easy to directly measure. To circumvent
this problem, we employ the alternating magnetic field
operator,

M̂S ¼
1

2

X
j

ð−1ÞjẐj; ð16Þ

where Ẑ ¼ j•ih•j − j∘ih∘j. This operator is natural because
it is experimentally accessible and it is proportional to the
total spin Ĵx operator in the approximate su(2) algebra of
Ref. [54], while QMBSs are eigenstates of the correspond-
ing Ĵz operator, defined via Eq. (11).
Figure 1 shows that, as for exact scars, the QMBS

eigenstates in the PXP model have largest QFI among all
eigenstates. Further differences in the connected correlation
functions between QMBS and other thermalizing eigen-
states are also observed [63]. However, as the scarred PXP
subspace is weakly connected to the rest of the Hilbert
space, in larger systems the QMBS eigenstates begin to
hybridize with thermal eigenstates [53], which is

manifested as a reduction in QFI and the overlap with
the Néel state. Signatures of this in the middle of the
spectrum can be observed in Fig. 1. Hybridization also
prevents the QFI of the individual QMBS states to scale
superextensively beyond a certain size, see Fig. 2. The
same figure also shows that, for thermal eigenstates, fQ
does not depend on N, as predicted in Eq. (5).
While hybridization will likely prevent any single

QMBS eigenstate from having a superextensive QFI,
FQ ∝ N2, in the asymptotic limit, such exact eigenstates
cannot realistically be prepared in Rydberg atom experi-
ments, as they lack protection from any global symmetry.
Instead, we propose that extensive QFI in this model can be
leveraged in practice by dynamically evolving the system to
moderate times, i.e., times longer than the initial relaxation
scale ∼1=Ω, whereΩ is the Rabi frequency for the model in
Eq. (15). In Fig. 3 we computed the evolution of QFI
density when the PXP model is quenched from various
initial states, contrasting the behavior of jZ2i with thermal-
izing initial states, such as the polarized state, j∘∘∘ � � �i,
and other random product states.
The dynamics from the jZ2i state in Fig. 3 clearly stands

out from other thermalizing initial states. Following the
initial spreading, fQ undergoes a fast growth in the jZ2i
case, reaching a broad maximum at intermediate times,
Oð102Þ. For all system sizes investigated (including the
ones where eigenstate hybridization is observed), the value
of this maximum is extensive in system size. Larger
systems can also be investigated using the symmetric
subspace approximation [59], confirming the extensive
scaling within this framework [63]. At much later times,
however, fQ starts to drop, as expected from the eigenstate
plot in Fig. 1. The nonextensivity of the late-time value of
fQ can be independently confirmed by computing the
infinite-time average using the diagonal ensemble with
corrections for higher moments [63].
Finally, we note that in addition to the tower of N þ 1

scarred eigenstates considered above, the PXP model also
hosts a few isolated exact scar states near the middle of its
spectrum [55]. The latter can be expressed as matrix

FIG. 2. Finite size scaling of QFI density for several QMBS
eigenstates of the PXP model with energies E near the middle of
the spectrum, contrasted against the mean value over all eigen-
states. The scaling is extensive until N ¼ 28, where hybridization
between the scarred eigenstates and thermal eigenstates with a
similar energy starts to lower fQ.

FIG. 1. (a) Overlap between exact PXP eigenstates and the Néel
state. Red squares indicate the QMBS eigenstates. (b) The QFI
density of the PXP eigenstates. The red squares denote the same
QMBS eigenstates as in (a). In both plots, the dips in the middle
of the spectrum are due to hybridization of QMBS eigenstates
with thermal states. The color code indicates the density of points
and all data are for the PXP model in Eq. (15) with N ¼ 32 spins.
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product states and therefore have area-law entanglement.
One can prove [63] that for these states fQ is bounded by a
constant when probed with the alternating magnetic field
[Eq. (16)], which makes such exact PXP scars distinct from
both the approximate PXP scarred eigenstates as well as the
towers of exact scars obeying the restricted spectrum
generating algebra in Eq. (7).
Discussion.—In this Letter, we have analytically dem-

onstrated that a large family of exact QMBS, described by
Eqs. (7) and (8), can be distinguished from bulk thermal
eigenstates through the scaling of their QFI. We find that
the long-range order of QMBS implies the superextensive
scaling of the QFI. This feature, together with the loga-
rithmic scaling of the entanglement entropy, affirms the
semiclassical nature of such states, that share the same
entanglement properties of asymptotic semiclassical tra-
jectories [64]. Moreover, our numerical study of the PXP
model shows that robust signatures of superextensive QFI
scaling can be expected despite the nonexact nature of
QMBS in that model. We also provided evidence that this
structure can be probed dynamically by measuring the
variance of an appropriate operator in current Rydberg
atom experiments. The multipartite entanglement consid-
ered here is very special and is known to have potential use
for quantum enhanced metrology. Given this finding for
QMBS, which are a particular example of weak-ergodicity
breaking, it would be interesting to investigate if other
systems in this class could show scaling of entanglement
beyond bipartite correlations.
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