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One of the major challenges for erroneous quantum computers is undoubtedly the control over the effect
of noise. Considering the rapid growth of available quantum resources that are not fully fault tolerant, it is
crucial to develop practical hardware-friendly quantum error mitigation (QEM) techniques to suppress
unwanted errors. Here, we propose a novel generalized quantum subspace expansion method which can
handle stochastic, coherent, and algorithmic errors in quantum computers. By fully exploiting the
substantially extended subspace, we can efficiently mitigate the noise present in the spectra of a given
Hamiltonian, without relying on any information of noise. The performance of our method is discussed
under two highly practical setups: the quantum subspaces are mainly spanned by powers of the noisy state
ρm and a set of error-boosted states, respectively. We numerically demonstrate in both situations that we can
suppress errors by orders of magnitude, and show that our protocol inherits the advantages of previous
error-agnostic QEM techniques as well as overcoming their drawbacks.
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Introduction.—Control over computational errors is one
of the central problems for the implementation of practical
quantum computing algorithms using quantum devices
subject to imperfections [1,2]. Towards the goal of achiev-
ing fully fault-tolerant computation based on logical
operations, the number of required qubits was reduced,
and their error rates were improved drastically in the recent
years, although the realization of ultimate digital quantum
computing is years ahead [3]. Therefore, it is important to
ask whether we can establish information processing
techniques which exploit the increasing quantum resource
without performing fully functional error correction.
The quantum error mitigation (QEM) techniques per-

form postprocessing on measurement data (usually expect-
ation values) to eliminate unwanted bias from computation
results, in exchange for additional measurement costs
[4–15]. One of the most prominent examples is the quasi-
probability method [5,7]. Once the error profile of gate
operations is given, stochastic operations are inserted to
construct the inverse operations of each error map so that
we can retrieve the computation result for the intended
quantum operation. However, the characterization of the
noise model, e.g., via the gate set tomography, is quite
costly and easily deteriorated by noise drift.

Meanwhile, error-agnostic QEM methods which do not
rely on prior knowledge on the error have been proposed:
the quantum subspace expansion (QSE) method [16–19]
and the virtual distillation (VD) method, which is also
called the error suppression by derangement (ESD) method
[20–23]. In the QSE method, we classically realize a
variational subspace spanned by a set of quantum states
fjψ iigi as jψi ¼ P

i cijψ ii, which can be effectively
generated via additional measurements and postprocessing.
While the QSE method was initially proposed to compute
excited states from a ground state realized on a quantum
device, it also contributes to the mitigation of errors. By
construction, the QSE method is well suited for mitigating
coherent errors which may come from insufficient varia-
tional optimization, lack of quantum circuit representabil-
ity, and etc. However, it cannot suppress stochastic errors
efficiently, since in general we need a linear combination
of exponentially many Pauli operators to construct a
projector to the error-free subspace [4,16]. The VD=ESD
method, on the other hand, is complementary in this
sense. By applying entangling operations between M
identical copies of noisy quantum states ρ, we can obtain
the error-mitigated expectation value of an observable

O as hOiðMÞ
VD ¼ Tr½OρðMÞ

VD � with ρðMÞ
VD ¼ ρM=Tr½ρM�, whose
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fidelity with a dominant eigenvector of ρ exponentially
approaches unity. Although this method can significantly
compensate for stochastic errors, it is entirely vulnerable to
coherent errors which distorts the dominant eigenvector.
In this work, we propose a unified framework of error-

agnostic QEM techniques which we refer to as the
generalized quantum subspace expansion (GSE) method.
The central idea is to extend the notion of quantum
subspaces to include general operators that are related to
the target noisy quantum state, which allows us to distill
the state into an error-mitigated eigenstate of the target
Hamiltonian. We show that the GSE method, which
provides a substantial generalization of the QSE method,
inherits the advantages of previous error-agnostic QEM
techniques as well as overcoming their drawbacks. This is
demonstrated under two practical choices of the subspace.
In the first example, the subspace consisting of powers of a
noisy quantum state ρm achieves not only the exponential
suppression of stochastic errors which is even more
efficient than the VD=ESD method, but also efficiently
mitigates coherent errors. In the second example, we span
the subspace by nonequivalent quantum states correspond-
ing to different noise levels. Unlike the commonly used
error-extrapolation method, the GSE method with the
subspace of error-controlled states is quite robust even
when the control over noise level is imprecise, and hence
highly beneficial to practical applications.
Framework of generalized quantum subspace

expansion.—Suppose we obtain a noisy approximation ρ
of some desired state, e.g., an eigenstate of a given
Hamiltonian H using the variational quantum eigensolver
(VQE) or its variants [24–33]. The GSE method uses the
following ansatz in the extended subspace to represent an
eigenstate

ρEM ¼ P†AP
Tr½P†AP� ; ð1Þ

where P ¼ P
i αiσiðαi ∈ CÞ is a general operator, σi is

generally a non-Hermite operator, and A is a positive-
semidefinite Hermite operator. In this Letter, we refer to σi
as a base of the subspace. It is easy to check that ρEM is a
positive-semidefinite Hermite operator whose trace is unity,
which ensures that ρEM corresponds to a physical quantum
state. Note that σi and A can be related to the noisy state ρ.
For example, we can choose σi ¼ ρ and A ¼ ρ; this
highlights the crucial difference of the novel GSE method
from the conventional QSE (see Supplemental Material for
more details [34]) that it also includes general operators
related to quantum states in the expanded subspace. To
span the most general subspace, we can take a base as
follows,

σi ¼
X

k

βðiÞk
YLk

l¼1

UðiÞ
lk ρ

ðiÞ
lk V

ðiÞ
lk ; ð2Þ

where βðiÞk ∈ C, ρðiÞlk is a quantum state, UðiÞ
lk and VðiÞ

lk are
operators that allow for an efficient measurement on
quantum computers (e.g., local Pauli operators or unitary
operators), and Lk denotes the number of quantum states.
See Supplemental Material for more details [34].
To obtain the error-mitigated spectra of the Hamiltonian,

we determine the coefficients α⃗ ¼ ðα0; α1;…Þ by solving
the following generalized eigenvalue problem [34]:

Hα⃗ ¼ ESα⃗; ð3Þ

where Hij ¼ Tr½σ†i AσjH� and Sij ¼ Tr½σ†i Aσj� with E
being the error-mitigated eigenenergy. The coefficients
are normalized as α⃗†Sα⃗ ¼ 1 to satisfy Tr½ρEM� ¼ 1. Note
that Hij and Sij need to be efficiently computed on
quantum computers. Once we find α⃗ which suffices
Eq. (3), we can compute the error-mitigated expectation
value of any observable O as hOi ¼ P

ij α
�
i αjTr½σ†i AσjO�.

By implementing the generalized quantum subspaces
spanned by Eq. (2), we can efficiently perform error-
agnostic QEM. To illustrate the significance of our scheme,
we will describe slightly more specific but highly practical
two subclasses. Because of their features explained there-
after, we refer to the employed subspaces as the power
subspace and fault subspace, respectively.
Power subspace.—Let us first restrict the bases of

subspace to powers of noisy quantum states as σi ¼ ρiði ¼
0; 1;…; mÞ and set A ¼ I:

ρEM ¼
Xm

i;j¼0

α�i αjρ
iþj: ð4Þ

This shows that the error-mitigated state ρEM is represented
as the series expansion of the state ρ as ρEM ¼ P

2m
n¼0 fnρ

n,
where fn ¼

P
iþj¼n α

�
i αj. Setting m ¼ 1, for instance,

leads to ρEM ¼ f0I þ f1ρþ f2ρ2, which clarifies that
ρEM is represented as a polynomial of ρ [35].
It has been pointed out that higher order states them-

selves are extremely useful [20,21,36]. By effectively
computing the expectation value of an observable corre-
sponding to the state ρðMÞ

VD ¼ ρM=Tr½ρM� (M ¼ 2; 3;…), we
can exponentially suppress the contribution from the non-
dominant eigenstates of ρ (See Supplemental Material for
details [34]). Our key insight is that the nondominant states
will be suppressed even more efficiently by interfering
them with each other. In fact, it is straightforward to see that
the power subspace for A ¼ I completely includes ρð2mÞ

VD ,
and therefore in the case of ground-state simulation we can
always surpass the performance of the VD=ESD method
when the dominant vector gives good approximation of the
ground state [34].
To illustrate the expected gain by our approach, we

numerically demonstrate our algorithm. Figure 1 shows the
results for 6 lowest eigenstates of the one-dimensional
transverse-field Ising (1D TFI) model, whose Hamiltonian
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is given asH ¼ −
P

r ZrZrþ1 þ h
P

r Xr, where Xr and Zr
denote the x and z components of the Pauli matrix acting on
the rth site and h is the amplitude of the transverse
magnetic field. We set h ¼ 1 in the following. It is clear
from Fig. 1 that both the VD=ESD method and our GSE
method yields exponential suppression of error with respect
to the number of copiesM. Moreover, the interference with
nondominant states in ρ yields quicker convergence of the
expectation value Tr½ρEMH� towards the exact values; this
is further boosted by including additional operators such
as ρmH to the bases, which is discriminated as the GSEþ
method in the figures. While we observe a trade-off
between the accuracy and estimation variance as shown
in Fig. 2, the greater suppression in the GSE=GSEþ
method gives us an advantage when the measurement
resources are not too scarce. Such a gain in the performance
is found not only in the energy, but also measures such as
the fidelity and trace distance (See Supplemental Material
for details [34]).

Now, let us further analyze the effect of the crucial
obstacle for the previous exponential error suppression
techniques—the coherent errors. It has been pointed out in
Refs. [20,21,37] that the stochastic gate errors themselves
may cause a deviation of the dominant vector, which is
called the coherent mismatch. In addition, there are
numerous other sources that give rise to the coherent
errors, e.g., restrictions on the variational ansatz structure
of quantum states due to experimental limitations. In this
regard, we interestingly find that our method provides a
significant improvement over previous methods, since the
expressibility of quantum states can be enhanced effec-
tively by the subspace.
Figure 3 shows the result for numerical simulations

focused on the ground state to support our findings. While
the accuracy of the raw noisy state and the conventional QSE
method scales only linearly with respect to Ntot, both the
VD=ESD and GSE methods using two copies of ρ provide
quadratic suppression in the noisy regime. However, the
difference of two methods is highlighted in the low-error
regime, in which the accuracy of the VD=ESD method is
bounded by the performance of the original VQE simulation.
Namely, when the ideal quantum circuit is not powerful
enough and involves algorithmic error, we cannot remedy the
shortage by merely restoring the dominant vector. In sharp
contrast, ourmethod is capable of eliminating such unwanted
errors.
It is important to remark that the required number of

measurements for the GSE method scales quadratically with
respect to the desired accuracy, just as in the usual quantum
measurements (see Supplemental Material for details [34]).
When the dominant vector of ρ gives a good approximation
of the ground state, this is mainly accounted for by the
sampling cost rooting from higher powers ρM.
Fault subspace.—Now we proceed to another practical

subclass of the GSE framework that employs nonidentical

FIG. 1. Suppressing errors in 6 lowest eigenstate calculations of a one-dimensional transverse-field Ising model by interfering M
copies of identical noisy quantum states. Eigenenergies computed by (a) the VD=ESD method, (b) GSE method based on the power
subspace, and (c) GSE method with additional bases. For the power subspace, we take the bases as σi ¼ ρi (i ¼ 0; 1;…; ðM=2Þ) and
A ¼ I for even number of copies M, while we take σi ¼ ρi (i ¼ 0; 1;…; ½ðM − 1Þ=2�) and A ¼ ρ for odd M’s. In (c), we additionally
include non-Hermite operators ρmH (m ¼ 0; 1;…; bM=2c). (d) The log scale plot of the deviation ΔE from the exact eigenenergies. For
each eigenstate level n, we generate the noisy state ρ by adding depolarizing error after each gate of a variational quantum circuit, whose
parameters are optimized by the subspace-search VQE algorithm [24] to solve an 8-qubit system under h ¼ 1. The depolarizing error
rate pdep is taken so that the expected number of total error in ρ is given as Ntot ¼ Ngatepdep, where Ngate is the number of gates. For all
data presented in this figure we set Ntot ¼ 1.5.

FIG. 2. Histograms of ground-state energy estimation by
VD=ESD (blue), GSE method based on the power subspace
(orange), and GSEþ method that includes the additional term ρH
included in power-subspace bases (red) using M ¼ 2 copies.
Here, we take the number of total measurement shots to be 109.
The gray dotted line indicates the exact ground state energy of the
1D TFI model with N ¼ 8 qubits.
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quantum states to span the quantum subspace. Here, the
error-agnostic QEM is realized by utilizing quantum states
from different noise levels, and hence the subspace is
referred to as the fault subspace; we take σi ¼ ρðλiϵÞwhere
ϵ is the unit of the controlled error (e.g., infidelity per gate)
and λi ≥ 1 determines the actual error level. For instance,
we consider an error-mitigated state as follows:

ρEM ¼
X

ij

α�i αjρðλiϵÞρðλjϵÞ; ð5Þ

where we have set A ¼ I and σi ¼ ρðλiϵÞ. We may
also extend the fault subspace to include high orders

ρmðλiϵÞðm ≥ 2Þ or operators UðiÞ
l and VðiÞ

l .
The concept of the fault subspace is closely related to the

celebrated error-extrapolation method [5,6]. In the error-
extrapolation method, one estimates the zero-noise limit of
the expectation value of a given observable O based
on results at nþ 1 noise levels hOðλiϵÞi ¼ Tr½ρðλiϵÞO�.
The estimated computation result is given as O� ¼P

n
i¼0 βihOðλiϵÞi þOðϵnþ1Þ, where βi ∈ R,

P
n
i¼0 βi ¼ 1

and
P

n
i¼0 βiλ

k
i ¼ 0 for k ¼ 1; 2;…; n (see Supplemental

Material for details [34]). This implies that the error-
extrapolation method constructs an effective density matrix
as ρex ¼

P
n
i¼0 βiρðλiϵÞ.

Because of its simplicity and practicality, the extrapo-
lation method has been investigated widely both theoreti-
cally and experimentally. However, the extrapolation is
based on a highly nontrivial assumption that the noise level
can be accurately controlled (e.g., by extending the gate
execution duration). Moreover, since the extrapolation is a

purely mathematical operation that does not take any
physical constraint into account, it may produce unphysical
results even if the measurement is done perfectly, e.g., ρex
can be an unphysical state whose eigenvalues can be
negative.
The GSE method using the fault subspace can solve the

above problems. First, the results obtained from the GSE
method correspond to a physical density matrix. Second,
the GSE method using the fault subspace does not rely on
the accurate knowledge of noise levels. This is because the
GSE method simply aims to construct a truncated Hilbert
space so that the lowest eigenstate is included. It suffices to
employ bases that are not identical to each other, while the
choice of error levels may affect the practical efficiency.
As a demonstration, we numerically investigate the

ground state of 1D TFI model assuming that the control
over the noise level is imperfect (see Supplemental Material
for simulation of excited states [34]). Here, we consider
three noise levels ρi ¼ ρðλ̂iϵÞ, where λ̂i ¼ λi þN ð0; λiϵσ2Þ
for λi ∈ f1; 2; 3g and variance σ2. The energy at the zero-
noise limit is estimated by the Richardson extrapolation for
each set of data D̂ ¼ fðλi;Tr½Hρ2ðλ̂iϵÞ�=Tr½ρ2ðλ̂iϵÞ�g. (See
Supplemental Material for details [34]). The extrapolated
value fluctuates due to the random realization of λ̂i, which
does not affect the GSE method almost at all. We highlight
this contrast in Fig. 4. Because of the stability, the GSE
method is suitable for experiments on quantum devices.
Summary and outlook.—We have proposed a generalized

quantum subspace expansion which unifies the advantages
of previously reported error-agnostic methods and further-
more overcomes their drawbacks. As a practical demon-
stration, we have first discussed to include powers of the

FIG. 4. Influence of fluctuation in the stretch factor λi. The blue
and orange points denote the results from the GSE method using
fault subspace and the extrapolation method for the VD=ESD
calculation using M ¼ 2 copies, respectively. It can be clearly
observed that the extrapolation method under uncertain noise
control yields both systematic deviation and increased variance.
For each error unit ϵ, we generate 500 sets of noisy quantum
states ρðλ̂iϵÞ where λ̂i ¼ λi þN ð0; λiϵσ2Þ for λi ∈ f1; 2; 3g and
σ ¼ 0.1. We assume that each Pauli term is estimated without any
shot noise.

FIG. 3. Relationship of the expected number of errors Ntot and
the ground-state energy deviation ΔE. Blue filled circles and red
filled circles denote the data from the VD=ESD and GSEþ
methods using M ¼ 2 copies of identical noisy quantum states,
respectively. Note that GSEþ denotes the GSE method with the
additional term ρH included in the bases of subspace fσig. The
purple crosses indicate the ordinary QSE method which corre-
sponds to choosing A ¼ ρ and σi ∈ fI; Hg. The black and green
lines indicate results from the raw noisy quantum state and error-
free optimized circuit, respectively. While the accuracy by the
VD=ESD result is bounded by the insufficient expressibility of
the variational quantum circuit, the GSE method can reach
beyond this limit by further exploring the subspace.
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noisy quantum state ρm in the base of the subspace. This
does not only provide the exponential suppression of
stochastic error, which is even more efficient than the
VD=ESD method, but it also eliminates the coherent errors
of the dominant vector. In the second strategy, we have
presented a method that spans the subspace using quantum
states with various noise levels. Unlike the commonly used
error-extrapolation technique, the GSE method exhibits
robust performance even when the control over noise level
is imprecise.
There are several future directions. First, an efficient

combination of the proposed scheme and other QEM
methods is worth exploring. For example, we can combine
the quasiprobability method with the proposed method to
suppress the bias of error-mitigated expectationvalues due to
finite characterization errors. We also expect that exploiting
symmetry of the system in the subspace [17,36] will also
improve the computational accuracy. Second, our method is
not restricted to near-term quantum computing, but may help
improve computational accuracy even in the fault-tolerant
quantum computing regimes, when problems of interest
involve calculation of eigenspectra. Namely, we may apply
the proposed method to mitigate the effect of errors due to
decoding of logical qubits or insufficient number of T gates
without any characterization. This is in contrast with the
previous works based on the quasiprobability method
[38–41]. The study of suitable subspace in our GSE
framework is also important in future works.
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