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High sensitivity quantum interferometry requires more than just access to entangled states. It is achieved
through the deep understanding of quantum correlations in a system. Integrable models offer the framework
to develop this understanding. We communicate the design of interferometric protocols for an integrable
model that describes the interaction of bosons in a four-site configuration. Analytic formulas for the
quantum dynamics of certain observables are computed. These expose the system’s functionality as both an
interferometric identifier, and producer, of NOON states. Being equivalent to a controlled-phase gate acting
on 2 hybrid qudits, this system also highlights an equivalence between Heisenberg-limited interferometry
and quantum information. These results are expected to open new avenues for integrability-enhanced
atomtronic technologies.
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Introduction.—Recent developments in the manipu-
lation of wavelike properties in matter are driving a raft
of atom-interferometric applications, in the vicinity of the
Heisenberg limit, within the field of quantum metrology
[1,2]. It has long been recognized that the ability to
effectively and efficiently harness quantum interference
is equivalent to implementing certain tasks in quantum
computation [3]. Nowadays, ultracold quantum gases are
proving to be successful in enabling quantum simulations
for phenomena such as quantum magnetism and topologi-
cal states of matter, beyond the capabilities of classical
supercomputers [4]. Through a confluence of these types of
investigations, there are several efforts to push research
toward designs for atomtronic devices [5–7], based on
circuits with atomic currents [8–11]. These devices promise
high levels of control in the manipulation of many-body
systems, leading to advanced sensitivity in metrology [12]
and other quantum technologies [13–17].
Around a decade ago [18] a class of models was

identified for physical realization of an interferometer,
using dipolar atoms. The Hamiltonian governing the time
evolution of the system is a generalized Bose-Hubbard
model on four sites, with closed boundary conditions and
long-ranged interactions. We begin by pinpointing a set of
integrable couplings for the Hamiltonian, that is, choices of
parameters for which there are four conserved operators,
equal to the number of degrees of freedom. The property of
integrability has two significant impacts: (i) integrable
systems have unique properties, such as the Poisson
distribution in energy level statistics [19], absence of
chaotic behaviors [20], and nonstandard thermal equi-
libration [21]—the quantum Newton cradle [22]
provided experimental verification of the latter—and

(ii) mathematically, integrability facilitates tractable,
closed-form formulas to describe the physics.
In our study we utilize the conserved operators of the

integrable system to guide the design of measurement
protocols for interferometric tasks (see Fig. 1). Our results
are applicable in a particular regime, designated as resonant
tunneling, whereby the energy levels separate into distinct
bands. Through an effective Hamiltonian approach, the
entire energy spectrum and structure of eigenstates become
explicit for resonant tunneling. Moreover, the system’s
behavior is clear in quantum information theoretic terms.
The interferometer is equivalent to a system of two hybrid
qudits [23], and the time evolution of states is equi-
valent to the operation of a controlled-phase gate
[24,25]. We describe proof of principle examples of
high-fidelity measurement protocols to identify and pro-
duce certain NOON states [1,3,26–28]. We also provide a

FIG. 1. Schematic representation of the interferometric circuit
with tunneling between nearest neighbors. An initial state is
prepared withM particles in site 1, and P particles in a (generally
entangled) state across sites 2 and 4. After Hamiltonian time-
evolution, measurement of particle number at site 3 is used to
deduce information about the initial, or postmeasurement, state
across sites 2 and 4.
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physical-feasibility analysis of the system with first-prin-
ciples calculations of the Hamiltonian para-
meters within an explicit Bose-atom setup (see the
Supplemental Material, Sec. A [29]).
The model.—An extended Bose-Hubbard Hamiltonian

on a square plaquette has the form [34,35]

H ¼ U0

2

X4
i¼1

NiðNi − 1Þ þ
X4
i¼1

X4
j¼1;j≠i

Uij

2
NiNj

−
J
2
½ða†1 þ a†3Þða2 þ a4Þ þ ða†2 þ a†4Þða1 þ a3Þ� ð1Þ

where faj; a†j∶j ¼ 1; 2; 3; 4g are canonical boson annihi-
lation and creation operators, U0 characterizes the short-
range interactions between bosons at the same site, Uij ¼
Uji accounts for long-range (e.g., dipole-dipole) inter-
actions between sites, and J represents the tunneling
strength between neighboring sites. The Hamiltonian
commutes with the total particle number N ¼ N1 þ N2 þ
N3 þ N4 where Nj ¼ a†jaj. Moreover, the Hamiltonian is
integrable when U13 ¼ U24 ¼ U0 and U12 ¼ U14 ¼
U23 ¼ U34. It acquires two additional conserved operators

Q1 ¼
1

2
ðN1 þ N3 − a†1a3 − a†3a1Þ;

Q2 ¼
1

2
ðN2 þ N4 − a†2a4 − a†4a2Þ;

such that ½Q1; Q2� ¼ ½Qj;H� ¼ ½Qj; N� ¼ 0, j ¼ 1, 2.
Integrability results from the derivation of the model
through the quantum inverse scattering method. It is
intimately related to exact solvability, due to the algebraic
Bethe ansatz [36]. Hereafter we only consider the inte-
grable case.
Resonant tunneling regime.—It is straightforward to

check that there are large energy degeneracies when
J ¼ 0. From numerical diagonalization of Eq. (1), with
N particles and a sufficiently small value of J, it is seen that
the low-energy levels coalesce into well-defined bands
[37], similar to that observed in an analogous integrable
three-site model [14,38]. In this regime, an effective
Hamiltonian Heff is obtained through consideration of
second-order tunneling processes. For an initial Fock state
jM − l; P − k; l; ki, with total boson number N ¼ M þ P,
the effective Hamiltonian is a simple function of the
conserved operators

Heff ¼ ðN þ 1ÞΩðQ1 þQ2Þ − 2ΩQ1Q2; ð2Þ

where Ω¼J2=f4U½ðM−PÞ2−1�g with U¼ðU12−U0Þ=4.
This result is valid for J ≪ UjM − Pj, which characterizes
the resonant tunneling regime. For time evolution under
Heff , both N1 þ N3 ¼ M and N2 þ N4 ¼ P are constant.
The respective (M þ 1)-dimensional subspace associated
with sites 1 and 3 and (Pþ 1)-dimensional subspace

associated with sites 2 and 4 serve as 2 coupled, hybrid
qudits [23], and provide the state space for the relevant
energy band. This yields a robust approximation for the
dynamics under Eq. (1), which we benchmark below. For
later use we will designate the qudit associated with sites 1
and 3 as qudit A, and that associated with sites 2 and 4 as
qudit B.
It is found through Bogoliubov transformations that the

spectrum of Heff is Eeff ¼ ðN þ 1ÞΩðq1 þ q2Þ − 2Ωq1q2
with q1 ¼ 0;…;M and q2 ¼ 0;…; P. Thus the time
evolution under Heff is recognized as a controlled-phase
gate [24,25]. From here, several analytic results are
accessible. For the initial Fock state jM;P; 0; 0i, the
expectation value of the fractional imbalance IðtÞ between
sites 1 and 3 is (in units where ℏ ¼ 1)

IðtÞ≡ hN1 − N3i=M ¼ cos½ðM þ 1ÞΩt�½cosðΩtÞ�P: ð3Þ
When P ¼ 0, there are harmonic oscillations in the
imbalance. For nonzero P, the oscillations are no longer
harmonic due to interference. For comparison, the results
from numerical diagonalization of Eq. (1) are shown in the
upper panels of Fig. 2.
Other initial states can be studied, such as

jΦðϕÞi ¼ 1ffiffiffi
2

p jM;P; 0; 0i þ exp ðiϕÞffiffiffi
2

p jM; 0; 0; Pi; ð4Þ

which is a product of a number state for site 1, vacuum for
site 3 (qudit A), and a phase-dependent NOON state [1,3]
across sites 2 and 4 (qudit B). We find the following result
for the fractional imbalance between sites 1 and 3:

hN1−N3i=M¼ cos½ðMþ1ÞΩt�½cosðΩtÞ�P
þcosðϕÞcos½ðMþ1ÞΩtþπP=2�½sinðΩtÞ�P:

ð5Þ

FIG. 2. Time evolution of expected fractional imbalance
hN1 − N3i=M (dot points) for the Hamiltonian [Eq. (1)] as a
function of time t in units of seconds, with U=J ≃ 1.2,
U=ℏ ≃ 2π × 19.5 Hz, J=ℏ ≃ 2π × 16.2 Hz, and different initial
states: (a) j4; 0; 0; 0i, (b) j4; 11; 0; 0i, (c)–(d) ðj4; 11; 0; 0i þ
expðiϕÞj4; 0; 0; 11iÞ= ffiffiffi

2
p

with ϕ ¼ 0 (c) and ϕ ¼ π (d). The top
panels display agreement with the formula (3) (solid lines), while
the bottom panels are in agreement with Eq. (5) (solid lines).
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This formula provides excellent agreement with numerical
calculations using Eq. (1). Examples are provided, for
choices ϕ ¼ 0 and ϕ ¼ π, in the lower panels of Fig. 2
using experimentally feasible parameters evaluated in the
Supplemental Material, Sec. A [29].
NOON state identification and production.—The above

results are sufficient to demonstrate the efficacy of the
system to perform certain interferometric tasks. First
consider a black box processor P that outputs one of
two possible NOON states, either symmetric or antisym-
metric. The output state, with particle number P, is loaded
into qudit B. WithM particles in site 1 and zero in site 3 of
qudit A, this composite initial state is given by Eq. (4) with
either ϕ ¼ 0 (symmetric) or ϕ ¼ π (antisymmetric).
Choose M such that N ¼ M þ P is odd, let the system
evolve for time tm ¼ π=ð2ΩÞ, and then measure the particle
number at site 3. According to Eq. (5), there are only two
possible measurement outcomes. One is to obtain the
outcome zero, which occurs with probability 1 when
ϕ ¼ π. The other is to obtain the outcomeM, which occurs
with probability 1 when ϕ ¼ 0 (cf. the lower panels of
Fig. 2, where the time of measurement is tm ≃ 3.57 s).
Moreover, this measurement is nondestructive, and the
NOON state in qudit B is preserved [39].
This analytic result is an excellent approximation for the

behavior governed by Eq. (1). From numerical results using
the parameters of Fig. 2, we find that the success proba-
bility when ϕ ¼ 0 is 0.98334, and it is 0.99383 when
ϕ ¼ π. This delivers a proof of principle example to show
that the model (1) has the capacity to perform interferom-
etry with high accuracy.
Remarkably, the earlier analysis on NOON state iden-

tification can now be inverted to show that the interfer-
ometer itself provides a high-fidelity simulation of the
black box processor P. For jΨ0i ¼ jM;P; 0; 0i with N ¼
M þ P odd, it can be shown that

jΨðtmÞi ¼
ð−1ÞðNþ1Þ=2

2
jM;P; 0; 0i þ 1

2
jM; 0; 0; Pi

þ 1

2
j0; P;M; 0i þ ð−1ÞðN−1Þ=2

2
j0; 0;M; Pi: ð6Þ

In accordancewith the previous discussion, measurement at
site 3 produces one of only two possible outcomes. A
measurement outcome of M causes wave function collapse
such that the state of qudit B is the symmetric (antisym-
metric) NOON state if ðN þ 1Þ=2 is odd (even).
Conversely, a measurement outcome of zero causes wave
function collapse with an antisymmetric (symmetric)
NOON state in qudit B if ðN þ 1Þ=2 is odd (even).
As before, it is useful to compare this result obtained

from Eq. (2) against the analogous predictions of Eq. (1).
Numerically, using the parameters of Fig. 2, we find that
the outcome fidelity of this processor simulation for Eq. (1)
is 0.97831 for outcome zero, and 0.99298 for outcome M,

with respective probabilities of 0.49611 and 0.47639, close
to the theoretically predicted values of 1=2 in each case. See
the Supplemental Material, Sec. B [29], for further details,
including probabilities and fidelities for intermediate
outcomes.
Entanglement and correlations.—The ability to produce

NOON states as described above is clearly dependent on
the ability to create entanglement. More important is the
ability to create “useful” entanglement since, as empha-
sized in the review article [1]: “Not all entangled states are
useful for quantum metrology” (see also Ref. [46]). Below
we demonstrate how this notion applies in the present
context by analyzing the entanglement produced and the
correlations present in the system.
It is convenient for our study to use the entanglement

measure of linear entropy EðρÞ, defined in terms of a
density matrix ρðtÞ ¼ jΨðtÞihΨðtÞj as [47,48] EðρÞ ¼
1 − trðρ2Þ. The linear entropy is bounded between 0 and
1 − 1=d, where d is the dimension of the space on which
the density matrix acts. For initial state jΨ0i ¼ jM;P; 0; 0i
the entanglement between qudits A and B at time tm is
quantified through E½ρ1;3ðtmÞ� ¼ 1=2, where ρ1;3ðtmÞ≡
tr2;4ρðtmÞ is the reduced density matrix (see the
Supplemental Material, Sec. B [29], for details). This result
is independent of P. It asserts that immediately prior to
making a measurement at site 3, at time t ¼ tm, the
entanglement between qudits A and B is independent of
whether N ¼ M þ P is even or odd.
Further, let ρ3ðtmÞ ¼ tr1½ρ1;3ðtmÞ�, which can be com-

pactly expressed as

ρ3ðtmÞ ¼
XM
q¼0

PðqÞjqihqj;

where PðqÞ refers to the probability of measuring q
particles at site “3”. The linear entropy of ρ3 quantifies
the entanglement between the subsystems, sites 1 and 3,
within qudit A. Now we encounter a significant differ-
ence between the even and odd cases. When N is
odd, E½ρ3ðtmÞ� ¼ 1=2. For even N, E½ρ3ðtmÞ� ¼ 1−
ð1=22MÞð2MM Þ ∼ 1 − ð1= ffiffiffiffiffiffiffi

Mπ
p Þ, where the second step

invokes Stirling’s approximation. By symmetry, the same
conclusion can be drawn for qudit B (with M replaced by
P). The curious observation to make here is that in the odd
case, which enables a protocol for NOON state production,
the premeasurement entanglement within the qudits is
substantially less than that for the even case. This is despite
the premeasurement entanglement between the qudits being
independent of number parity. While number-parity effects
are ubiquitous in fermionic systems [49–53], they are less
frequently encountered in bosonic models. The situation
reported here displays some features in common with the
work of Ref. [54].
A similar feature is observed in the correlations of the

system. In order to quantify the effects of odd or evenN, we
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first define the following NOON correlation function
between sites “1” and “3”,

C1;3 ¼
4

M2
ðhN1ihN3i − hN1 N3iÞ; ð7Þ

where C1;3 ¼ 1 if there exists a NOON state at qudit A.
Again for initial state jΨ0i ¼ jM;P; 0; 0i, using Eq. (3) and
the result hðN1 − N3Þ2i=M2 ¼ 1þ αM½Ið2tÞ − 1�, αM≡
ðM − 1Þ=ð2MÞ, yields

C1;3ðtÞ ¼ 1 − I2ðtÞ þ αM½Ið2tÞ − 1�

and C2;4ðtÞ ¼ C1;3ðtÞjM↔P by symmetry. At t ¼ tm, we
obtain C1;3ðtmÞ ¼ M−1, C2;4ðtmÞ ¼ P−1 for N even, and
C1;3ðtmÞ ¼ C2;4ðtmÞ ¼ 1 for N odd where the last result
asserts the simultaneous existence of NOON states in each
of the qudits only for the odd case. The presence of a
NOON state at t ¼ tm is signaled by attaining the maxi-
mum of the NOON correlation function C1;3 and a
simultaneous dip in the normalized linear entropy
Ẽ½ρ3ðtÞ� ¼ ðM þ 1ÞE½ρ3ðtÞ�=M, as shown in Fig. 3.
Further details on correlations between the qudits, and in
particular the role of Eq. (5), are discussed in the
Supplemental Material, Sec. C [29].
Heisenberg-limited interferometry.—Finally, we estab-

lish that the system is capable of interferometry with
sensitivity at the Heisenberg limit, through the archetypal
example of parameter estimation through the phase of a
NOON state [1,3]. Consider initial state Eq. (4) with N ¼
M þ P odd, and ϕ ¼ 0. A new phase φ is encoded into the
bosons at site 4 through a transformation, a†4 ↦ expðiφÞa†4
(cf. Refs. [18,37]). This still corresponds to Eq. (4), but now
with ϕ ¼ Pφ, a phenomenon known as phase super
resolution [27,28]. Again for time interval t ¼ tm, the
imbalance between sites 1 and 3 is obtained from
Eq. (5) as

hN1 − N3i ¼ ð−1ÞðNþ1Þ=2M cosðPφÞ ð8Þ

providing the interference fringe with maximal contrast.
Figure 4 shows the dependence of the fractional imbalance
hN1 − N3i=M on parameters φ and time t.
Next, it can be confirmed that hðN1 − N3Þ2i ¼ M2, so

ΔhN1 − N3i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðN1 − N3Þ2i − hN1 − N3i2

q

¼ Mj sinðPφÞj;

where Δ denotes the standard deviation. Using the standard
estimation theory approach [1,3], it is found that the system
achieves Heisenberg-limited phase sensitivity since

Δφ ¼ ΔhN1 − N3i
jdhN1 − N3i=dφj

¼ 1

P
:

This is an improvement on the classical shot-noise case
where Δφ ∼ 1=

ffiffiffiffi
P

p
[1,3]. In the Supplemental Material,

Sec. D [29], we present a discussion on the robustness of
the system with respect to perturbation about the inte-
grable case.
Conclusion.—We have provided an example of inte-

grable atomtronic interferometry, through an extended
Bose-Hubbard model, with four sites arranged in a closed
square. The integrable properties of the model furnished the
necessary tools to understand the dynamics of the system in
the resonant tunneling regime. It allowed for the analytic
calculation of dynamical expectation values and correlation
functions heralding NOON state formation. This, in turn,

FIG. 3. Normalized linear entropy and NOON correlation
function. The red (green) line depicts Ẽ½ρ3ðtÞ� [C1;3ðtÞ]
calculated with the effective Hamiltonian Heff of Eq. (2),
while the dots illustrate the numerical values obtained with
the Hamiltonian [Eq. (1)]. The initial state is jΨ0i ¼
j4; 11; 0; 0i, and the Hamiltonian parameters are U=ℏ ¼ 2π ×
19.5 Hz and J=ℏ ¼ 2π × 16.2 Hz.

FIG. 4. Dependence of hN1 − N3i=M as a function of time t (in
units of seconds) and phase φ, for initial state [Eq. (4)] with
M ¼ 4, P ¼ 11, ϕ ¼ Pφ, and U=J ≃ 1.2. Upper surface: the
colors range from light to dark blue, indicating lower and higher
values for the imbalance fraction. The green color represents the
region where hN1i ≈ hN3i. Lower plane: the effect on the
system’s dynamics is highlighted, specifically for the limiting
cases φ ¼ 0 and φ ¼ π=P, where it is seen that there is a
minimum-maximum inversion at φ ¼ π=ð2PÞ.
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informed the relevant time interval required to implement
certain measurement protocols. The probabilities for meas-
urement outcomes [29] were computed via the density
matrix. We demonstrated proof of principle examples that
the integrable system functions as an identifier of NOON
states produced by a black box processor, and as a
simulator of such a processor.
Our study highlights the quantum information connec-

tions of the model by detailing its function as a hybrid qudit
system subjected to a controlled-phase gate operation. This
description complements other qudit studies in photonic
[55–57] and NMR [58] settings, which are attracting
attention due to the promise of increasing quantum com-
putational capacity. It is anticipated that our results, in an
atomtronic framework, may be transferable to these and
other contexts. Besides providing feasibility for the physi-
cal setup and identifying means to experimentally probe the
correlations between the qudits [29], the proposed scheme
allows for further investigations of measurement-based
protocols for novel quantum technologies. It also expands
prospects for studying thermalization processes in the
context of integrability.
In future research, we will undertake studies involving

other states that may be useful for metrological applica-
tions, such as coherent states and Dicke states. We will
examine the evolution of these input states, and investigate
the correlations and the resulting generation of entangle-
ment. Particular emphasis will be given to the under-
standing of multipartite entanglement generation, beyond
the bipartite investigations reported here.
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