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A family of marginally rigid (isostatic) spring networks with fractal structure up to a controllable length
was devised, and the viscoelastic spectra G�ðωÞ calculated. Two nontrivial scaling regimes were observed,
(i) G0 ≈ G00 ∝ ωΔ at low frequencies, consistent with Δ ¼ 1=2, and (ii) G0 ∝ G00 ∝ ωΔ0

for intermediate
frequencies corresponding to fractal structure, consistent with a theoretical prediction Δ0 ¼
ðln 3 − ln 2Þ=ðln 3þ ln 2Þ. The crossover between these two regimes occurred at lower frequencies for
larger fractals in a manner suggesting diffusivelike dispersion. Solid gels generated by introducing internal
stresses exhibited similar behavior above a low-frequency cutoff, indicating the relevance of these findings
to real-world applications.
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Introduction.—Many soft matter and complex systems
exhibit power-law rheology over a broad frequency range,
manifested as parallel scaling of the linear storage and
loss moduli G0ðωÞ ∝ G00ðωÞ ∝ ωΔ [1–3], or equivalently a
power-law relaxation spectrum [4–6]. Relating this scaling
to the underlying causal mechanisms would guide the
selection of synthesis pathways producing desirable
material properties in a number of application domains
[7,8], but is not yet generally possible. Of the many
potential contributions, slow structural relaxation [9–11]
cannot be a prerequisite, as Δ ≪ 1 has been observed in
protein hydrogels with permanent cross-links and no
unfolding [12–14]. There must therefore be processes
capable of generating broad distributions of relaxation
times that do not require topological changes to material
microstructure.
It has been hypothesized that the broad distribution of

relaxation times derives from a similarly broad distribution
of structural length scales [3,13]. Such structure emerges
naturally from cluster aggregation processes, which can
produce a scale-invariant, or fractal, geometry up to a
characteristic maximum length [15–17]. Calculations for
branched fractal polymers predict power-law rheology with
a Δ that depends on the fractal dimension df and solvent
condition [18,19], but cannot explain valuesΔ ≪ 1without
invoking unphysical fractal dimensions [20]. A quite
different mechanism applies to tenuous solids close to
their rigidity transition, defined here as when G0ðω ¼ 0Þ
first becomes nonzero, such as at gelation. Normal mode
analysis of athermal elastic packings has demonstrated that
the lowest eigenvalue, and hence relaxation frequency,
vanishes as the rigidity transition is approached, resulting in
an arbitrarily broad relaxation spectrum [21–24].
The relative contributions of these two nonexclusive

mechanisms to power-law viscoelasticity can be elucidated
by the construction and analysis of model systems that are

both fractal and marginally rigid. Such systems are con-
sidered here. A family of athermal spring networks based
on the Sierpinski triangle was devised in which every node
connects to z ¼ 2d ¼ 4 others, equaling the isostatic
threshold when frames first become rigid [25]. These
correlated networks [26,27] are fractal up to a controllable
length, as in aggregation-derived structures [15–17], and
the lower limit of this length produces the kagome lattice
[28,29]. These networks are related to those of Machlus
et al. [30] that however are not locally isostatic everywhere.
A matrix-based solver was then used to estimate G�ðωÞ
over a broad range of ω, and two nontrivial scaling regimes
were found. Low frequencies were consistent with Δ ¼ 1

2
,

also measured for bond-diluted networks, and attributed to
marginal rigidity. This matches the exponent for cross-
linker-unbinding in semiflexible polymer networks [31] but
has a distinct origin. It also matches the intermediate
scaling regime for thermal Rouse modes in linear polymers,
extended to fractal branched polymers by Muthumukar
[18,20], but again a causal relation seems improbable.
Conversely, an intermediate frequency regime exhibited
Δ < 1

2
that was related to the spectral dimension of

Sierpinski fractals [32]. The crossover frequency between
the two regimes varied with the maximum fractal length in
a manner suggesting diffusivelike dispersion. The gener-
alization of these findings to arbitrary fractals are discussed
at the end.
Methods.—Arrays of 2n × 2n nodes were assembled

onto regular triangular lattices with spacing a in a rec-
tangular box of dimensions commensurate to the lattice.
The full system was partitioned into two system-spanning
triangles with opposite orientations, each with 2n nodes
along each edge. Each triangle was then subdivided into
four equal-sized subtriangles with edge length 2n−1, and so
on recursively, generating subtriangles with edge lengths
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2n−2, 2n−3, etc., for n −m iterations. For the remaining m
iterations, only three subtriangles at vertices were recursed
as per standard Sierpinski triangle generation, thus gen-
erating fractal structure for lengths 2ma down; see Fig. 1(a).
Edges of the smallest triangles after the final nth iteration
were mapped onto Hookean springs, excluding those lying
along the edges of the major triangles with 2m nodes along
each edge. Isolated nodes with no attached springs were
removed. To remove colinear springs, x and y coordinates
of all nodes were perturbed by small Gaussian displace-
ments with mean zero and variance ðσjaÞ2, where
σj ¼ 0.05. The natural lengths of all springs were set to
the internode separation after this perturbation, so there
were no internal stresses. When internal stresses were

required, all natural spring lengths were additionally
changed by a Gaussian random variable with zero mean
and variance ðΛaÞ2, and nodes nonlinearly moved to
coordinates obeying static equilibrium using FIRE [33].
Elastic forces on network nodes were required to balance

drag forces due to the surrounding fluid throughout cycles
of simple oscillatory shear at frequency ω. Hydrodynamic
interactions [35,36] were absent; therefore the only degrees
of freedom were the complex displacement 2 vectors for
each node α, written as uαðtÞ ¼ uα

ωeiωt in terms of the
complex amplitudes uα

ω (real part understood). The drag
force on node α was ζ½vα;affðtÞ − ∂tuαðtÞ� in terms of the
drag coefficient ζ and the affine fluid velocity at the
position ðxα; yαÞ of node α, vα;affðtÞ ¼ ½γðtÞyα; 0� [37].
After canceling all factors of eiωt, the force balance
equations between drag (left-hand side) and elastic
(right-hand side) forces were

ζðvα;affω − iωuα
ωÞ ¼

X

β∼α
Hαβðuβ

ω − uα
ωÞ; ð1Þ

with Hαβ the 2 × 2 Hessian matrix for a single spring of
stiffness k between connected nodes α and β,

Hαβ
ij ¼ kt̂αβi t̂αβj þ ταβ

lαβ ðδij − t̂αβi t̂αβj Þ ð2Þ

in terms of the unit vector t̂αβ from α to β, the internode
separation lαβ, and the spring tension ταβ which vanishes
in the absence of internal stresses. Equation (1) was
assembled into a global solution vector of all nodal
complex amplitudes, and the resulting matrix equation,
including Lees–Edwards shifts across sheared boundaries
[38], solved using the SuperLU sparse direct method [39]
as described previously [36].
Viscoelastic spectra.—Example networks are presented

in Fig. 1(b). Every node was connected to z ¼ 4 others,
except for m ¼ n, when two nodes in the entire system had
z ¼ 2, resulting from the largest fractal triangles intersect-
ing tip to base through the periodic boundaries, rather than
tip to tip as for m < n. The kagome lattice [28,29]
corresponds to m ¼ 1, and as m → n, Sierpinksi triangles
of fractal dimension df ¼ ln 3= ln 2 [40] became evident.
As derived in the Supplemental Material [34], the total
number of springs Nspring ¼ 6ð3m − 2mÞ4n−m and nodes
Nnode ¼ 3ð3m − 2mÞ4n−m þ δnm, with δnm the Kronecker
delta. Thus the mean coordination number hzi ¼
2Nbond=Nnode ¼ 4 for m < n, with a small correction
4 − hzi ∼ 4 · 3−ðmþ1Þ for m ¼ n. The pebble game method
[41] confirmed all nodes belonged to a single rigid cluster,
and there were no redundant springs—that is, springs
that can be removed without loss of rigidity—except for
a trivial Oð1Þ set deriving from rigid-body motion of the
whole network. This means that all springs become

(a)

(b)

FIG. 1. (a) Schematic of network generation for system size
2n × 2n and maximum fractal length 2m. Upward (dark) and
downward (light) oriented triangles spanning a periodic box
were subdivided into four subtriangles (left). Each subtriangle
was then recursively subdivided into three triangles each over
m ¼ 3 further iterations, as per standard Sierpinksi triangles
(right). (b) Examples of networks for n ¼ 4 and 1 ≤ m ≤ 4.
Dots denote nodes, and straight lines denote springs. The
maximum fractal extent is indicated by the shaded triangles,
and the origin has been shifted so all nodes are clearly visible.
Arrows indicate the two nodes for m ¼ n with z ¼ 2. Images for
n ¼ 6 are provided in Ref. [34].
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stressed, with either positive or negative tension, when the
network is sheared.
Viscoelastic spectra G�ðωÞ for different m are given in

Fig. 2. It is straightforward to derive the affine prediction
G0

aff=k ¼ ð ffiffiffi
3

p
=2Þð3m − 2m=4mÞ [34], which matches the

numerical results for large ω, confirming affinity at
frequencies above the highest one-spring mode [42]. By
contrast, for low frequencies a power-law scaling G0ðωÞ ≈
G00ðωÞ ∝ ωΔ with Δ ≈ 0.5 was observed. This is consistent
with the Kramers–Kronig relation specialized to power-law
G�ðωÞ, which requires G00=G0 ¼ tanðΔπ=2Þ [43]. The
exponent Δ ¼ 1

2
has been predicted by effective medium

[37] and scaling [44] theories for nonfractal systems. As the
maximum fractal length ∝ 2m was increased, an intermedi-
ate frequency regime emerged in which both G0ðωÞ and
G00ðωÞ scaled as a power law ≈ωΔ0

with Δ0 ≈ 0.22. The
fitted ratio G00=G0 ≈ 0.35was consistent with the Kramers–
Kronig previously mentioned, i.e., tanðΔ0π=2Þ≈
tanð0.22π=2Þ ≈ 0.36, suggesting this scaling will persist
to ω → 0 for arbitrarily large fractals 2m → ∞.
Furthermore, it was possible to collapse curves for m ≥ 3
onto a single master curve for low and intermediate
frequencies by scaling ω by ωf ∝ ð2mÞ−2, and G�ðωÞ by
ðωfÞ1=2 so as to preserve G0 ≈G00 for low ω. Since the
maximum fractal length is ∝ 2m, this collapse suggests
ωf ∼ q2 for the wavelength ∝ q−1 ∝ 2ma, which is a
diffusivelike dispersion relation [1]. The same collapse
was also observed for m ¼ 1, 2 but to a different master

curve for reasons that are not yet understood; see Fig. S1 of
the Supplemental Material [34]. The scaling of the regimes,
and the width of the crossovers between them, do not
depend on system size as shown in Fig. S2 of the
Supplemental Material [34].
G�ðωÞ was also calculated for networks generated by

random bond dilution, where springs are present with a
probability p. Such networks are known to exhibit a rigidity
transition at a critical dilution p ¼ pc that is well defined
for infinite systems [45]. For p sufficiently close to pc, it
was found that the viscoelastic spectra were again con-
sistent with G0ðωÞ ¼ G00ðωÞ ∝ ω1=2, as demonstrated in
Fig. S3 of the Supplemental Material [34]. The power-law
regime with an exponent ≈0.4 previously reported for the
lowest frequencies attained by more general numerical
schemes [35,37] is also apparent in this figure, and
identified here as an intermediate frequency regime.
The exponents for the viscoelastic scaling regimes were

confirmed by the scaling framework of Tighe, which, after
eliminating a correlation length, predicts G0 ∝ G00 ∝ ω1−ν,
with ν related to the variation of the magnitude of nonaffine
displacements, NA ∝

P
α juα − uα;aff j2 ∝ ω−ν, where

uα;aff is the affine displacement for node α [44]. For low
frequencies, NA decayed with an exponent ν ≈ 0.5 as
shown in Fig. S4 of the Supplemental Material [34],
consistent with theoretical considerations [46] and the
viscoelasticity scaling Δ ¼ 1 − ν ¼ 1

2
. For the intermediate

frequency regimes, the prediction became ν ¼ 1 − Δ0,
and thus ν ≈ 1 − 0.22 ¼ 0.78 for fractal networks and
≈1 − 0.4 ¼ 0.6 for bond-diluted networks, which is again
consistent with the NA data in the same figure.
Derivation of Δ0.—Liu recursively generated the

dynamical matrix for isolated Sierpinski spring networks
to derive the scaling of the density of states [32]. The same
approach can be extended to derive a prediction for the
slope Δ0 of the intermediate regime. Let FðτÞ denote the
contribution to rigidity by processes with relaxation time τ,
and assume a power-law tail FðτÞ ∼ F0τ

−μ. Following Liu
[32], for each additional level of recursion, both the
diagonal dynamical matrix elements and the number of
degrees of freedom increase by a factor of 3, whereas the
effective stiffness halves. For overdamped systems as here,
the diagonal scaling suggests an effective damping coef-
ficient that increases threefold, and hence the relaxation
time τ—being proportional to damping and inversely
proportional to stiffness—increases by a factor of 6.
Using τ and τ0 to denote relaxation times between succes-
sive levels of recursion, this means that

3

2
F0ðτ0Þ−μdτ0 ¼ F0τ

−μdτ; ð3Þ

with the left-hand side factors 3 for the increase in degrees
of freedom, and 1

2
for the reduction in stiffness. This second

factor is absent in Ref. [32]. Inserting τ0 ¼ 6τ into Eq. (3)

FIG. 2. Viscoelastic spectra for networks of 2n × 2n nodes
with n ¼ 10, with fractal structure up to a length ∝ 2m with m
given in the legend. Solid lines denote G0ðωÞ scaled to the spring
constant k, and dashed lines denote the network contribution
(i.e., less the solvent contribution ηω for viscosity η) to G00ðωÞ.
Thin horizontal lines give the affine prediction, G0

aff ¼
ð ffiffiffi

3
p

=2Þkð3m − 2m=4mÞ. The same data is replotted against
ω=ωf with ωfζ=k ¼ ð2mÞ−2 in the lower panel, with fits to
the intermediate scaling regime shown. In both panels, thick line
segments have the annotated slope.
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gives ð3=2Þ61−μ ¼ 1, or μ ¼ 2 ln 3= ln 6. Using the relation
FðτÞ ∝ τ−μ to G�ðωÞ ∝ ωμ−1 [4,5],

Δ0 ¼ ln 3 − ln 2
ln 3þ ln 2

≈ 0.226; ð4Þ

in good agreement with the measured value Δ0 ≈ 0.22.
Internal stresses.—Geometries that sustain states of self-

stress can be rigid when networks of the same topology, but
with geometries that permit fewer or no states of self-stress,
are nonrigid [25,47–49]. Internal stresses were introduced
by changing the natural spring lengths by a random amount
∝ Λa as described earlier; an example is given in Fig. S5 of
the Supplemental Material [34]. As before, application of
the pebble game confirmed the lack of redundant bonds for
these perturbed geometries, i.e., all springs became either
stretched or compressed, as evident from the figure.
Viscoelastic spectra varying Λ with m fixed are shown
in Fig. 3(a). The spectra for Λ > 0 match those for Λ ¼ 0
for high frequencies, changing to a solid response, with
constant G0ðωÞ and G00ðωÞ ∝ ω, below a frequency ωΛ that
increases with Λ. Furthermore, it was possible to simulta-
neously collapse both the low and intermediate frequency
regimes for Λ > 0 by scaling G� by the plateau modulus
G0 ¼ G0ðω ¼ 0Þ, and the frequency ωΛ such that
G00ðω�Þ ∝ ωΛ for the lowest frequencies, as shown in
Fig. 3(b). The G0 and ωΛ used to achieve this collapse
are given in Figs. 3(c) and 3(d) respectively, for a range of
maximum fractal lengths ∝ 2m.
Both the plateau modulus G0 and the crossover fre-

quency ωΛ smoothly approach zero as Λ → 0, suggesting
internal stresses generate rigidity continuously [50] by
removing low-frequency response modes. A similar trend
was seen for adding random springs, and also for removing
springs which induces a crossover to fluidlike (rather than
solidlike) response starting at low frequencies, as shown in
Fig. S6 of the Supplemental Material [34]. Unlike internal
stresses, such perturbations also modify the network con-
nectivity. For Λ ≪ 1, the crossover frequency data are
consistent with the quadratic variation ωΛ ∝ Λ2 for all m.
The variation of G0 depends upon whether ωΛ falls in the
low- or intermediate-frequency regimes; that is, whether
ωΛ < ωf or ωΛ > ωf, which in turn is controlled by the
fractal length ∝ 2m. For small m, ωΛ < ωf for all Λ
considered, and G0 ∝ Λ ∝ ω1=2

Λ , consistent with a low-
frequency cutoff when G� ∝ ω1=2 scaling is obeyed.
Conversely, for larger m when ωΛ > ωf becomes acces-
sible, the data are consistent with G0 ∝ Λ2Δ0 ∝ ωΔ0

Λ , which
itself is consistent with a frequency cutoff in the inter-
mediate regime G� ∝ ωΔ0

. Qualitatively similar results
have been observed for elastic sphere packings under
compression and elastic beams under shear [48,51], but
it is unclear if there is any relationship between the
exponents in these systems.

Discussion.—It has been shown that the design of
isostatic networks [52] that are fractal up to an arbitrarily
large length is possible, and that for the Sierpinski triangle-
based spring networks considered here, power-law visco-
elastic scaling was observed with an exponent Δ0 that can
be theoretically derived. That this scaling survives above a
cutoff frequency for systems into the solid phase indicates
relevance to real-world applications utilizing postgelled
materials. However, a general relation between Δ0 and the
fractal dimension df is not yet available, as existing
expressions [18,19] have limited applicability, and the
arguments of Liu [32] cannot be easily generalized to
arbitrary df. The crossover frequency ωf is not related to a
Boson-like peak as this vanishes at isostaticity [22,51];
normal mode analysis might help identify its role in mode
propagation. Experimental validation of these trends should
be possible by controlling the size of the fractal meso-
structure (measured via scattering) varying the volume
fraction and/or the reaction rate [12,13]. A broad frequency
range at gelation would be accessible using time-cure
superposition [53], and should reveal an intermediate
power-law regime that is here predicted to extend to lower
frequencies for larger fractal lengths. Quantitative
agreement would however require the development of
three-dimensional models with realistic aggregation
kinetics. In addition, any future experimental validation
will require quantitative predictions for the crossover
frequency between low and intermediate scaling regimes,
necessitating three-dimensional modeling. Further work

(a) (b)

(c) (d)

FIG. 3. (a) Viscoelastic spectra for fractal length ∝ 2m with
m ¼ 7, varying the magnitude of internal stress Λ. The upper set
of curves (solid) are G0, and the lower (dashed) are the network
contribution to G00. Selected values of Λ are given in the legend;
curves for other Λ interpolate these. (b) The same data replotted
with G� scaled by G0 ¼ G0ðω ¼ 0Þ and ω scaled by ωΛ. (c) and
(d) give the corresponding values of G0 and ωΛ as functions of Λ,
increasing incrementally from m ¼ 3 (top curves) to m ¼ 8
(bottom curves). For all figures, the solid line segments have
the annotated slopes.
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investigating a broader range of fractal structure with
d ¼ 3, including dynamically generated stochastic fractals
as opposed to the deterministic fractals considered here,
would help alleviate these challenges and improve our
understanding of the link between fractal structure and
viscoelastic response for this important class of materials.
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