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We develop a microscopic theory for the two-dimensional (2D) spectroscopy of one-dimensional
topological superconductors. We consider a ring geometry of an archetypal topological superconductor
with periodic boundary conditions, bypassing energy-specific differences caused by topologically
protected or trivial boundary modes that are hard to distinguish. We show numerically and analytically
that the cross-peak structure of the 2D spectra carries unique signatures of the topological phases of the
chain. Our work reveals how 2D spectroscopy can identify topological phases in bulk properties.
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Topological phases of matter have attracted considerable
attention following the discovery of topologically non-
trivial magnetic and electronic phenomena like the
Berezinskii-Kosterlitz-Thouless transition [1–4] and the
integer and fractional quantum Hall effect [5,6]. Some
topological systems, such as superconducting quantum
wires [7], spin liquids [8], and vortices on surfaces of
topological superconductors [9] are predicted to host any-
ons such as spatially isolated Majorana zero-energy boun-
dary modes that are of interest to quantum information
processing [10,11]. Despite experimental evidence of zero-
energy modes [12], their topological origin remains in-
conclusive [13]. Experimental techniques that reliably
identify one-dimensional (1D) topological superconductors
are badly needed. Current approaches detect the localized
zero-energy boundary modes, but cannot unambiguously
discriminate them against topologically trivial features that
appear close to zero energy as well, like Yu-Shiba-Rusinov
states [14–18], Kondo peaks [19,20], Andreev bound states
[21], and Caroli-de Gennes-Matricon states [22,23]. In 2D
electronic systems, dispersive Majorana edge modes have
been shown to increase the linear optical conductivity [24].
A versatile advanced tool is nonlinear 2D spectroscopy

[25,26] applied in the THz frequency regime to probe
electronic excitations in solid-state nanostructures [27–30]
or the Fermi glass phase in disordered correlated materials
[31]. Recently, 2D spectroscopy of two- and three-
dimensional topological spin liquids has theoretically
revealed characteristic spectral properties of itinerant
spin-based anyons and fractons [32–34] and of strongly
correlated two-band Fermi-Hubbard models [35]. It offers
additional features in comparison to pump-probe THz
spectroscopy [36–39]. The main difference lies in the
decoupling of the waiting time and excitation frequency
resolution both of which are high [40]. This is in stark
contrast to pump-probe spectroscopy where both are

inherently connected by a Fourier uncertainty. Moreover,
the lack of large background signals permits excellent
signal-to-noise ratios.
In this Letter, we employ 2D nonlinear spectroscopy to

analyze the periodic Kitaev chain, the archetype of one-
dimensional topological superconductors, describing the
topological electronic properties of nanowires [12], atomic
magnetic chains [41,42], and cold atom systems [43].
Rather than investigating the Majorana boundary modes
of this model, we consider a periodic configuration to study
the topological properties of the bulk and characterize its
two phases by 2D spectroscopy. This could be realized by
atomic chain quantum corrals. In particular, we compare
Kitaev chains with the same bulk energy spectrum but a
different topological phase. We predict experimental sig-
natures due to topological effects, eliminating differences
caused solely by the bulk energy spectra or topologically
trivial or nontrivial localized zero-energy states. We find
signatures of superconducting topological band inversion
in the 2D spectra, which are characteristic for the topo-
logical phase and which are absent in linear absorption
spectra. Our predictions should be verifiable by 2D THz
spectroscopy [27–31].
Model.—The Kitaev chain is a 1D spin-polarized uncon-

ventional superconductor with the Hamiltonian

H ¼
XN
n¼1

½−wa†nþ1an − μa†nan þ Δananþ1� þ H:c:; ð1Þ

where an is a fermionic annihilation operator, 2μ is the
chemical potential, w the nearest-neighbor hopping, and Δ
is the complex superconducting gap parameter [7]. In
physical systems, the parameters can assume a wide range
of energies starting from suspended hybridizing atomic
chains or semiconductors where they are of the order of eV
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and going down to meV in hybridized Yu-Shiba-Rusinov
states [12,44]. However, the superconducting gap is always
in the meV range or less. The system has an electronic band
gap for jwj ≠ jμj and Δ ≠ 0 [7]. For dominant hopping
jwj > jμj, the open chain, i.e., aNþ1 ¼ 0, has an in-gap
mode localized at both ends of the chain. Its energy is
exponentially small in the system size. In the large-N limit,
this mode decomposes into two spatially isolated Majorana
operators [7] whose existence is protected by the electronic
energy gap in the bulk. The mode can only disappear by
closing the gap. Hence, there are two distinct gapped
phases: the topologically trivial phase without and the
topologically nontrivial phase with Majorana end modes.
Both are characterized by a Z2 topological invariant of the
bulk only [45,46]. The boundary modes are due to an
interface between different topological phases explained by
the bulk boundary correspondence [47].
Kitaev [7] has already pointed out that there is a map in

form of a simple parameter transformation that leaves the
band structure of the periodic chain invariant but changes
the topological phase. We find that the transformed
parameters are given by

μ0 ¼ �w; w0 ¼ �μ; Δ0 ¼ eiϑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2þjΔj2 −w2

q
; ð2Þ

where ϑ is an arbitrary real number. If the system is
originally in the nontrivial phase, i.e., jμj < jwj, then the
transformed chain with the primed parameters will be in the
trivial phase, because jw0j ¼ jμj < jwj ¼ jμ0j. The same
holds vice versa. By this, a dual Hamiltonian with the same
spectrum but the inverse topological phase is assigned to
each topologically trivial one. Yet, if μ2 þ jΔj2 − w2 < 0,
which can only happen in the nontrivial phase, there will be
no trivial Hamiltonian with the same band structure.
We start with the simplest case, w ¼ Δ. The linear

transformation U defined by

U†anU ¼ iða†n − an − a†nþ1 − anþ1Þ=2 ð3Þ

corresponds to the transformed parameters μ0 ¼ w and
w0 ¼ Δ0 ¼ μ. In general, we can construct the map between
the phases by concatenating the Bogoliubov transformation
diagonalizing the trivial Hamiltonian with the inverse of the
transformation that diagonalizes the nontrivial Hamiltonian
with the same band structure. Even simpler, the map in
Eq. (3) can be extended to jwj ≤ jΔj by fixing the super-
conducting phase to φ ¼ arccosðw=jΔjÞ.
2D spectroscopy.—In 2D spectroscopy, the system is

subjected to three consecutive electromagnetic pulses and
its response is probed by interference with a fourth pulse
[25,26]. In the dipole approximation, i.e., when the shortest
wavelength of the light is much larger than the extent of the
chain, the radiation-matter interaction Hamiltonian reads
VðtÞ ¼ −d · EðtÞ, where d denotes the dipole operator and
EðtÞ the electric field. For the Kitaev chain, d ¼ −eR with

the position operator R ¼ P
N
n¼1 rna

†
nan and e the electron

charge. Here, rn is the location of site n. We consider a ring
of radius r with rn ¼ rðcos ð2πn=NÞ; sin ð2πn=NÞ; 0ÞT . A
similar dipole operator emerges from a low-energy descrip-
tion of realistic systems as shown for a Rashba wire in the
Supplemental Material [48].
We are interested in the time-dependent polarization

PðtÞ ¼ hdðtÞiρðtÞ, which provides the measurable electro-
magnetic response. Here, ρðtÞ is the density matrix of
matter. Because the system consists of broad electronic
bands, we compute the full third-order signal Pð3ÞðtÞ for the
2D spectra, which is the sum of all phase matching
directions. It can be detected in a collinear beam geometry.
Breaking it into phase matching components could reveal
additional information on specific groups of dynamical
pathways, which goes beyond the present study. Coherent
2D techniques, in particular the double quantum coherence,
are usually applied to discrete electronic systems like
molecules [49].
We assume that at time t ¼ 0 the system is in its ground

state, and obtain the third-order contribution to the polari-
zation [25,26]

Pð3Þ;jðtÞ ¼
Z

∞

0

dt3dt2dt1Emðt − t3ÞElðt − t3 − t2Þ

× Ekðt − t3 − t2 − t1ÞSð3Þ;jklm ðt3; t2; t1Þ; ð4Þ
with a sum over repeated indices and the third-order
response function Sð3Þ;jklm ðt3; t2; t1Þ. The 2D signal is dis-
played by its Fourier transform

Sð3Þ;jklm ðω3; t2;ω1Þ ¼
2

ℏ3
θðt2Þ

X4
α¼1

Z
∞

0

Z
∞

0

ImCj
α;klmðt3; t2; t1Þ

× eiðω1t1þω3t3Þdt1dt3; ð5Þ

with the Heaviside function θðtÞ and Cα are the four-point
correlation functions of the dipole operator (see the
Supplemental Material [48]). ω1 and ω3 are the excitation
and detection frequency, respectively, and t2 the waiting
time. In the following, we set t2 ¼ 0.
Results.—We restrict the discussion to the Sð3Þ;xxxx compo-

nent, where all light pulses are polarized in the x direction.
The signals for this feasible configuration are similar to the
ones for a physically unrealistic linear chain with periodic
boundary conditions. We choose a representative slice in
the ðw ¼ ΔÞ plane to demonstrate the parameter depend-
ence of the 2D spectra. By this, we can use the map in
Eq. (3) to clarify the qualitative differences between the
phases. Representatives of the two phases are the trivial
atomistic limit (dissected atoms) and the sweet spot of the
Majorana chain that hosts localized Majorana modes in an
open chain. We fix the maximal quasiparticle energy Λ as
the energy scale. In our case, Λ can be in the meV regime,
but depending on the physical system, Λ can vary up to eV
[12,44]. We follow the trajectory
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Γs ¼ ðμs; ws;ΔsÞ ¼ Λð1 − s; s; sÞ=2; ð6Þ

where 0 ≤ s ≤ 1, which interpolates between the two
extreme casesHðΓ0Þ being the Hamiltonian in the atomistic
limit and HðΓ1Þ the Hamiltonian for the sweet spot, such
that Λ remains unchanged at all instances. For s < 0.5,
HðΓsÞ is in the topologically trivial phase, for s > 0.5 in the
nontrivial phase, and for s ¼ 0.5, the system reaches the
semimetallic critical point, where the bulk gap closes. The
spectra and band structures of HðΓsÞ and HðΓ1−sÞ coincide
due to the map U in Eq. (3). By this, 2D spectra for
different topological phases with the same eigenenergies
can be compared.
Representative 2D spectra for a band gap of Λ=2 and for

the gapless critical point are shown in Fig. 1 (see also the
Supplemental Movie [48]). They include a Gaussian broad-
ening (σ ¼ 0.05Λ) to increase readability. Noticeable peaks
in the 2D spectra are arranged along three main axes, the
diagonal ω1 ¼ ω3, the counterdiagonal ω1 ¼ −ω3, and the
horizontal ω3 ¼ 0. Valuable information is contained in

the cross peaks on the counterdiagonal and the horizontal.
A change of the cross-peak pattern is observedwhen passing
from the topologically trivial to the nontrivial phase. The
counterdiagonal peaks dominate the nontrivial phase, while
they almost disappear in the trivial phase. The horizontal
peaks appear in both phases. They form a large inhomoge-
neously broadened peak in the trivial phase but become
disconnected in the nontrivial phase and are most pro-
nounced at the band edges. Furthermore, their relative
magnitude significantly decreases. In general, the overall
magnitude of the 2D spectra increases for s → 1. The peak
amplitudes between the phases differ by orders of magni-
tude. For perfectly flat bands in the trivial phase, they can
evenvanish due to the charge conserving nature of the dipole
operator. The ground state in the trivial phasewith flat bands
is either the empty or fully filled lattice. There are no other
states with the same charge, hence, all transitions are
forbidden. For flat bands in the nontrivial phase, there are
numerous possible transitions, in contrast. The charge
expectation value of the ground state is−Ne=2. We estimate

FIG. 1. Imaginary part of the 2D spectrum of the Kitaev ring at waiting time t2 ¼ 0 (a) in the topologically trivial phase with
μ ¼ 0.375Λ; w ¼ Δ ¼ 0.125Λ, (b) at the critical point in between with μ ¼ 0.25Λ; w ¼ Δ ¼ 0.25Λ, and (c) in the nontrivial phase with
μ ¼ 0.125Λ; w ¼ Δ ¼ 0.375Λ. The chain length is N ¼ 60, Λ is the maximal excitation energy of a single quasiparticle. The
topologically trivial and nontrivial phases are distinguished by peaks on the counterdiagonal and the splitting of the peak on the
horizontal.

FIG. 2. Imaginary part of the 2D spectrum of the Kitaev ring in (a) the topologically trivial phase with μ ¼ 0.005Λ; w ¼ Δ ¼ 0.495Λ,
and (b) the nontrivial phase with μ ¼ 0.495Λ and w ¼ Δ ¼ 0.005Λ for N ¼ 60.
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that for even N, the number of Fock states with charge
−Ne=2 is 2N=

ffiffiffiffi
N

p
due to Sterling’s formula. This accounts

for the discrepancy of the magnitudes between the 2D
spectra of the almost flat band scenarios shown in Fig. 2.
For the nearly flat bands in Fig. 2, we find essential

differences between the 2D spectra of the two topological
phases. In the trivial phase, the horizontal peaks are the
dominant cross peaks while counterdiagonal peaks are
absent. In the nontrivial phase, the counterdiagonal peaks
are dominant while the horizontal peaks are reduced. To
show that this is generic, we depict the cross sections along
the diagonal, counterdiagonal, and horizontal in Fig. 3. For
each value of s, the 2D spectra are normalized to their
maximal peak amplitude. The diagonal at t2 ¼ 0 carries
information on the linear response spectra. We find the 2D
spectra to be symmetric about the phase transition at
s ¼ 0.5. This reaffirms that the linear response cannot
uncover differences between the phases. Our analytic
calculations show that the difference between the phases
in linear spectroscopy is essentially a scaling factor [48].
For the counterdiagonal, cross peaks disappear in the trivial
regime s < 0.5, but are strong in the nontrivial regime
s > 0.5. Importantly, the change in the relative peak
amplitudes when crossing the critical point s ¼ 0.5 is
continuous. The signal from the horizontal sections forms
a broad continuum in the trivial phase that is clearly split in
the topological phase. This is caused by the superconduct-
ing topological band inversion characteristic for the model.
The anomalous term in Eq. (1) mixes the particle and hole
bands. In the trivial phase, the bands maintain their
predominant particle and hole character, respectively. In
the topological phase, the bands change between particle
and hole character at the inversion points in the Brillouin
zone. There, the nonvanishing two-particle to two-particle
transition dipole moments have a gap closure [48]. This is
absent in the trivial phase and is thus unique to the
topological phase. For large N, their transition frequencies
go to zero. Hence, they contribute to the horizontal peaks in
the 2D spectra, and the observed splitting of the peak

continua provides a clear signature of the superconducting
topological band inversion. The difference in the cross
peaks and the absence of any difference in the diagonal
peaks are a fundamental advantage of nonlinear spectro-
scopy for characterizing topological phases. Our results
transfer to finite Kitaev chains with open boundary con-
ditions. Yet, additional Majorana end modes as well as
possible trivial zero-energy modes result in a doubling of
the 2D spectrum at energies of the order of the band gap
that must be accounted for. Remarkably, the bulk contri-
bution is qualitatively the same as for the periodic con-
figuration, suggesting that our results are largely insensitive
to the specific geometry underlying the dipole operator.
Furthermore, local parametric disorder of up to 30% of the
band gap energy does not significantly affect the signature
of the topological phase. These two observations suggest
the robustness of the signature of the topological phase (see
the Supplemental Material [48] for more details).
The map U offers an alternative interpretation of

our results. Rather than considering U to actively change
the topological phase, we could equivalently consider the
Hamiltonian to be invariant and passively transform the
measurement operator, i.e., the dipole operator, which has
the form of a local chemical potential, into the Majorana
braiding operator Bn;nþ1 ¼ a†nþ1an þ anþ1an þ H:c: for
adjacent sites [50]. Formally, this means U†dU ¼
ðe=2ÞPN

n¼1 rnBn;nþ1. Then, the 2D spectrum can be
interpreted in two ways: first, the chain being in one phase
and probed by the common dipole operator, and second the
chain being in the other phase and probed by the braiding
operator.
Conclusions.—With the Kitaev ring, we propose a

physical realization of the Kitaev chain with periodic
boundary conditions and calculate the THz response in
2D nonlinear spectroscopy with three parallel polarized
field pulses. By a mapping between the topologically trivial
and nontrivial phases that changes the phase but not the
band structure of the Kitaev Hamiltonian, we identify
signatures stemming solely from topological effects and

FIG. 3. (a) Diagonal, (b) counterdiagonal, and (c) horizontal sections of the imaginary part of the 2D spectra for the Hamiltonian
HðΓsÞ as a function of s following Eq. (6). For each parameter set Γs, the 2D spectra are normalized to their maximal peak amplitude.
The chain length is N ¼ 60. Differences between the topological phases emerge along the counterdiagonal and the horizontal lines. In
the trivial phase (s < 0.5), the counterdiagonal peaks disappear. The horizontal peaks are more pronounced in the trivial phase than in
the nontrivial phase (s > 0.5).
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not from the energy spectra. A superconducting topological
band inversion is then detected by cross peaks in the 2D
spectra, which underlines the advantage of nonlinear
spectroscopy over linear spectroscopy for topological
systems. A band inversion has recently been resolved in
scanning tunneling microscope experiments [44], which
couples to the local charge rather than the dipole operator.
2D spectroscopy is less invasive, offers higher spectral
resolution, and is less prone to dissipation, where any
backaction of a macroscopic tip on the quantum system can
be excluded. A seeming caveat of our approach is that the
superconducting gap Δ should be rather large for the U
map to exist. However, our analytic computation of the
dipole moments [48] suggests that our results carry over to
small Δ. In contrast to topological spin liquids [32,33], the
electronic system at hand can be probed both in its
topologically trivial and nontrivial phase, and its topologi-
cal features are revealed by bulk properties only, omitting
the spectroscopy of hard-to-control low-energy topological
quasiparticles that interfere with the topological response of
the bulk. Future research on multiple topological band
inversions and multiband models could help to establish a
general connection between our findings and the bulk
topological invariant.
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