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The type-II terminated 1T-TaS2 surface of a three-dimensional 1T-TaS2 bulk material realizes the
effective spin-1=2 degree of freedom on each David star cluster with T 2 ¼ −1 such that the time-reversal
symmetry is realized anomalously, despite the fact that bulk three-dimensional 1T-TaS2 material has an
even number of electrons per unit cell with T 2 ¼ þ1. This surface is effectively viewed as a spin-1=2
triangular lattice magnet, except with a fully gapped topological bulk. We further propose this surface
termination realizes a spinon Fermi surface spin liquid with the surface fractionalization but with a
nonexotic three-dimensional bulk. We analyze possible experimental consequences, especially the surface
spectroscopic measurements, of the type-II terminated surface spin liquid.
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There has been great interest in the theoretical commu-
nity to classify distinct topological phases with or without
symmetry [1–10]. These include classifying different
symmetric spin liquids and classifying symmetry-enriched
topological orders and symmetry protected topological
phases. Questions like where to realize the classified
topological states were raised and partially understood
[8]. It was understood that two-dimensional (2D) spin
liquids (and/or 2D intrinsic topological orders) with certain
symmetry fractionalizations cannot be realized in strictly
2D systems [8,11]. Instead, they may be realized on the 2D
surface of the three-dimensional (3D) symmetry protected
topological states where the symmetry is realized anoma-
lously [8]. Likewise, similar results were established in the
study of time-reversal symmetric 3D U(1) spin liquids
where time-reversal symmetry is realized anomalously for
the spinons and supports gapless surface liquid states
[7,12]. Despite the interesting theoretical advances, such
anomalous realizations of the low-dimensional spin liquids
on the surface of the high-dimensional topological states,
including those that can in principle be realized in strictly
low-dimensional systems, have not yet been achieved.
In this Letter, we turn to the material’s side and point out

that the 3D multilayer-stacked 1T-TaS2 can be a candidate
to anomalously realize the 2D spin liquid on its surface.
This system has several interesting properties that differ
from the conventional magnets. With the 3D multilayer
stacking, the system develops the dimerization between
neighboring layers along the z direction such that there
exist even number of layers in each unit cell (see Fig. 1).
The system develops a
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order at low temperatures, and the TaS2 layer distorts to
form cluster units with the shape of the Star of David. There
exist 13 electrons in each Star of David, and thus one
unpaired electron in the cluster unit. As the 3D system has
even TaS2 layers in the unit cell, the whole system is
connected to a band insulator with a band gap, and we do
not expect exotic quantum phases to emerge in the bulk.
This is actually compatible with the Lieb-Schultz-Mattis-
Oshikawa-Hastings (LSMOH) theorem that states the
possibility of topological order and spin liquids in insula-
tors with odd electron fillings [13–15]. The surface of this
material, however, makes a difference. Because of the
dimerization, there exist two distinct surface terminations
[16] (see Fig. 1). The type-I (type-II) surface terminates at
the end (middle) of the dimer. In this Letter, we provide a
theoretical understanding of two different surfaces and
argue that the type-II surface is an anomalously realized
spin liquid.

FIG. 1. (a) The Star of David clusters. After the charge-density-
wave transition, the Ta─Ta bonds are contracted, forming affiffiffiffiffi
13
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supercell structure. (b) The out-of-plane stacking

structure. The A-type and the L-type stacking occur alternately,
which is referred to as the AL stacking. (c) Schematic of the
type-I termination. (d) Schematic of the type-II termination.
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The observation is to consider the 1D chain built from
the coupling of the Star of David cluster along the
z direction. Once one turns on the electron hopping along
the chain, the model becomes a spinful version of the Su-
Schrieffer-Heeger (SSH) model [17] if one neglects the
displacement of the dimers from the neighboring layers. As
shown in Figs. 1(c) and 1(d), the van der Waals bonds
between the neighboring layers in the same dimer (in
orange) are relatively strong, while those between different
dimers are weak. The 1D chain supports gapless end states
if the system terminates at the middle of the strong bond
just like the type-II surface termination. Because of the spin
part, the end states form a Kramers doublet with T 2 ¼ −1.
As each David star hosts one unpaired electron, in the real
space picture, two electrons from the strong bond pair up,
leaving the electron on the end of the chain unpaired. When
the 3D system is formed as in Fig. 1(d), the bulk is a band
insulator while the surface is a 2D metal with an electron
Fermi surface in our band structure calculation without
including the strong correlation effect. When the electron
correlation is included, the charge of the surface electron is
clusterly localized in the David star, and the surface
becomes Mott insulating. The remaining spin-1=2 degrees
of freedom form a spin liquid. This surface spin-1=2
moment is anomalously realized, and so is the surface
spin liquid. If the top surface of the system is type I and the
bottom surface is type II, this “thick” 2D system would
have an odd electron filling, and the presence of surface
spin liquid is compatible with the LSMOH theorem.
The electronic structures of 1T-TaS2 are calculated by a

first-principles method within the Kohn-Sham scheme of
density functional theory (DFT) [18,19], as implemented in
the Quantum ESPRESSO package [20,21]. Details can be found
in the Supplemental Material (SM) [22]. We use the AL
stacking structure [see Fig. 1(b)], which was found to have
the lowest energy previously [31–33]. This stacking
sequence leads to dimerization along the z direction.
The resulting Ta─Ta bond lengths in the star varies from
3.17 Å to 3.28 Å. The interlayer distance is around 6.7 Å,
which is larger than the experimental value 5.92 Å [34].
Adding the van der Waals force corrections can get a
smaller interlayer distance, but does not qualitatively
change the surface states shown below due to the topo-
logical nature of the SSH model. Following the convention
in the literature [31,32], the bulk band structure is plotted
along the high-symmetry lines in the Brillouin zone of
the 1 × 1 × 1 primitive cell [22], as shown in Fig. 2(a).
As a result of the dimerization, the bulk band of the
dimerized TaS2 is gapped. To obtain the low-energy
model, we select the conduction and the valence band
around the Fermi level, and construct the maximally
localized Wannier functions using the WANNIER90 package
[35,36]. The band structure of the resulting two-band tight-
binding (TB) model is plotted by red crosses in Fig. 2(a).
It can be seen that the TB band structure well reproduces
the DFT result.

To investigate the surface states of different terminations,
we calculate the Green’s function of the semi-infinite model
based on the bulk two-band TB model, utilizing an iterative
procedure [37] implemented in the WannierTools program
[38]. The corresponding spectral functions for the type-I
and type-II terminations are shown in Figs. 2(b) and 2(c),
respectively. It is clearly seen that the type-I surface is
gapped. In contrast, for the type-II termination, although
the bulk is a band insulator, there is a surface band locating
in the bulk gap. We have verified that the states on the
surface band are indeed located on the surface (see the SM
[22]). This surface band is half filled, making the type-II
surface a two-dimensional metal if we neglect the corre-
lation effects.
What would be the fate of this surface metal once the

strong electron correlation is included? A large Kondo
resonance was recently detected on the type-II surface upon
the Pb doping [39], indicating the presence of the surface
local moments. Moreover, early works on the monolayer
1T-TaS2 indicate a cluster Mott insulating state where the
unpaired electron from each Star of David is Mott localized
and forms the local spin-1=2 moment [40–47]. Based on
these results, we propose, upon introducing the electron
correlation, the surface electron is localized via Mott
transition [22] and forms the spin-1=2 Kramers doublet
in each Star of David with T 2 ¼ −1. This anomalously
realized spin-1=2 moment on the surface rises from the
combination of the type-II surface and the Mott localiza-
tion. Effectively, the surface becomes a spin-1=2 triangular
lattice magnet, and this triangular lattice is the superlattice
formed by the clusters. Like the situation for 1T-TaS2
monolayer [40,42], we expect that the type-II surface
realizes a spinon Fermi surface spin liquid.
This anomalously realized spin liquid, once formed on

the type-II 1T-TaS2 surface, could be detected indirectly by
the angle-resolved photoemission. Here we propose an
indirect spectroscopic detection scheme based on the sur-
face coverage by a metallic layer. This differs from the
direct spectroscopic measurement of the Mott insulating
surface spin liquid [48]. We consider a conducting layer
with itinerant electrons dosed on top of the type-II 1T-TaS2

FIG. 2. (a) The band structure of bulk 1T-TaS2 along the high-
symmetry lines in the Brillouin zone of the primitive cell. The
DFTand the tight-binding model results are shown by blue curves
and red crosses, respectively. The spectral functions Aðk;ωÞ of
the type-I and type-II terminated semi-infinite models are shown
in (b) and (c), respectively.
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surface. A similar setup has been experimentally realized
with graphene to investigate the proximity effect through
scanning tunneling microscopy and spectroscopy quite
recently [49]. The conducting layer contains itinerant
electrons that interact with the underlying unpaired elec-
trons of the 1T-TaS2 surface as

He ¼ −
te
2

X
hijiσ

ðc†iσcjσ þ H:c:Þ − μe
X
iσ

c†iσciσ

þ
X
hikiσσ0

Kikðc†iστσσ0ciσ0 Þ · Sk; ð1Þ

where c†iσ (ciσ) creates (annihilates) an electron with spin σ
at site i on the conducting layer, te is the hopping
parameter, μe is the chemical potential, and τ are the
Pauli matrices. S is the spin degree of freedom of the
unpaired electrons on the cluster that is coupled to itinerant
electrons via the Kondo-Hund coupling parameter K. Here
the Kondo-Hund coupling is treated as a probing coupling
for the emergent surface spinons. For the surface spin liquid
of 1T-TaS2, the electron experiences a spin-charge sepa-
ration where the charge sector is Mott localized while the
spin sector is in the spin liquid phase. Without loss of
generality, we consider a mean-field theory to incorporate
the surface spinons that are described by a mean-field
Hamiltonian,

Hs ¼ −
X
hijiσ

ts;ijðf†iσfjσ þ H:c:Þ − μs
X
iσ

f†iσfiσ; ð2Þ

where ts;ij refers to the spinon hopping on the triangular
lattice formed by the cluster, and f†iσ and fiσ (with
Si ¼ f†iσ½σσσ0=2�fiσ0 ) are the spinon creation and annihila-
tion operators on the cluster of the surface triangular
superlattice. The chemical potential μs enforces the half
filling constraint. For the uniform spinon hoppings with
ts;ij ¼ ts=2, the mean-field theory describes the spinon
Fermi surface U(1) spin liquid.
The coupling to the conduction electrons could signifi-

cantly modify the effective removal operator of electrons in
the Mott insulator and thus result in the energy gains of the
photoelectric effect. Physically, the ejected electrons carry
the information from both the conduction and the Mott
insulating layers. In the weak Kondo-Hund coupling limit,
it has been shown that, in addition to the pure electron part,
there exists an intertwined spin and charge response at the
leading order due to the convolution of the itinerant
electron spectral function Aeðk;ωÞ with the spin correlation
function Sðk;ωÞ of the Mott insulating layer [50],

Aðk;ω ≤ 0Þ ∝
Z

0

−∞

dω0

2π

Z
d2q
ð2πÞ2 KðqÞ

× Aeðq;ω0ÞSðk − q;ω − ω0Þ; ð3Þ

where KðqÞ describes the Kondo-Hund coupling
between the itinerant electrons and the spins, and the spin
correlation function Sðq;ωÞ ¼ R

∞
−∞ dte{ωthS−q · SqðtÞi.

Note that Sðq;ωÞ vanishes for ω > 0 [22]. When the
Mott insulating layer is a spin ordered state, the spin
correlation Sðq;ωÞ diverges at the ordering wave vector Q
and the zero frequency ω ¼ 0, resulting in Aðk;ω < 0Þ ∝
Kðk −QÞAeðk −Q;ωÞ. It can be immediately inferred
that the intertwined spectral function manifests as a
replica of itinerant electron bands but is shifted by the
wave vector −Q and modulated by the Kondo-Hund
coupling in intensity.
The intertwined signal for the spin liquid state is,

however, quite different from the replica scenario because
the spin correlation is a continuum both in momenta and
frequency. The discrepancy stems from the peculiar energy
distribution of the photoelectric effect in Eq. (3). The
spectral function for conduction electrons can be approxi-
mated by Aeðq;ω0Þ ≈ δðω0 − ξqÞ, in which ξq is the differ-
ence between the electron energy εq and the chemical
potential μe. Equation (3) can be reduced to

Aðk;ω ≤ 0Þ ∝
Z
ω≤ξq≤0

d2q
ð2πÞ2KðqÞSðk − q;ω − ξqÞ: ð4Þ

For the integration domain, we have used the fact that both
Aeðq;ωÞ and Sðq;ωÞ are restricted in the nonpositive
frequency range ω ≤ 0. Experimentally, the energy ξq
can be shifted by tuning the electron chemical potential
μe via gating. In the dilute limit, only a small number of
electrons lie in the Fermi pocket around q ¼ Γ̃. Within this
pocket, ξq can be approximated by −δμþ q2=2m�, where
δμ ¼ μe − εmin is the difference between the chemical

(a) (b)

(c) (d)

FIG. 3. (a) The spectral function Aeðk; εÞ for conduction
electrons. Colored lines refer to Fermi levels for two dilute
fillings where differences between the chemical potential μe and
the band minimum εmin take δμ ¼ 0.5 and 1.5, respectively.
(b) The spin correlation Sðk;ωÞ of U(1) spin liquid with the
spinon Fermi surface. (c),(d) The intertwined electron spectral
function Aðk;ωÞ for dilute fillings shown in (b). The electron
hopping is fixed to te ¼ 5ts.
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potential μe and the band minimum εmin, and m� is the
effective mass of electron. Moreover, the intensity modu-
lation from the momentum-dependent Kondo-Hund cou-
pling KðqÞ can be treated as a constant KðeΓÞ in this
approximation. For the case −δμ > ω, the domain of
integration in Eq. (4) can be replaced by −δμ ≤ ξq ≤ 0
and the leading order term turns out to be

Aðk;ω ≤ 0Þ ∝ Sðk;ωþ δμÞδμ: ð5Þ

On the other hand, for small ω such that −δμ < ω, we have
Aðk;ω ≤ 0Þ ∝ Sðk;ωþ δμÞδω ¼ 0 because now the fre-
quency argument of S is positive. In any case, the
information from the dynamic spin structure of the surface
spin liquid can be conveyed into the intertwined spectral
function as Eq. (5).
To quantitatively demonstrate the intertwined resonance,

we calculate the spectral weights for a metallic layer on top
of the surface spin liquid based on the complete convolu-
tion Eq. (3) directly. For numerical convenience, the
metallic layer is set to match the triangular spin superlattice
of 1T-TaS2 and they are AA stacked so that the final results
are uniformly modulated by the Kondo-Hund coupling
KðqÞ. As argued previously, such a uniform modulation is
always expected in the dilute limit. More complicated
coupling modulations corresponding to distinct stackings
can be simulated and compared to the experimental results
similarly. Given that the spinon band width is much smaller
than that of the conduction electrons, we take ts as the
energy unit and set te ¼ 5ts hereafter. The numerical results
for different electron fillings are presented in Figs. 3 and 4
for high-symmetry momenta and a fixed frequency, respec-
tively. The evolution of Aðk;ωÞ for more general fillings
can be found in the SM [22].
In Fig. 3(a), we present the spectral function Aeðk; εÞ for

noninteracting electrons in the conducting layer. Two Fermi
levels corresponding to dilute fillings with δμ ¼ 0.5 and 1.5
are indicated by colored lines. Figure 3(b) shows the spin
correlation Sðk;ωÞ of the U(1) spin liquid described by the
free-spinon Hamiltonian Eq. (2). Because of the presence
of the spinon Fermi surface, the particle-hole excitation can
occur until the limit with zero energy transfer. At finite
frequencies, the allowed momentum transfer excitations
encode the spinon band information into the intensity of the
spin correlation. This rich structure can be well captured by
the intertwined electron spectral function Aðk;ωÞ at the
dilute limit as shown in Fig. 3(c) where δμ ¼ 0.5. The
slight broadening of fine structures comparing to Fig. 3(b)
can be attributed to the scattering between spinons and the
electrons with finite energy and momentum. Away from the
dilute limit, these scatterings become more pronounced and
the detailed features of the spin correlation are inevitably
blurred, as shown in Fig. 3(d). There is an overall shift of
the intertwined spectral function in frequency when tuning

the electron filling. The displacement is at the order of δμ as
predicted by the theoretical analysis.
Near the zero frequency, the spinon Fermi surface further

supports particle-hole excitations with the 2kF momentum
transfer as sketched in the inset of Fig. 4(a). As a
consequence of such type of excitations, the momentum
distribution of Sðk; 0Þ features pronounced overlapping
circles with radius 2kF [see Fig. 4(a)]. The 2kF feature has
also been predicted in the static spin structure factor and
treated as the necessary condition for detecting spin liquids
with the spinon Fermi surface [42]. Our simulations reveal
that this feature can be clearly reconstructed in the
intertwined spectral function Aðk;ωÞ after the convolution
in the dilute limit, as shown in Fig. 4(b) where δμ ¼ 0.5.
Considering the overall shift [compare Figs. 3(b) and 3(a)],
we have taken the frequency ω ¼ −δμ ¼ −0.5. Again, with
the increase of the electron filling, the 2kF circles become
blurry, but are still discernible, as shown in Fig. 4(c) for
ω ¼ −δμ ¼ −1.5.
The above results suggest that the angle-resolved photo-

emission spectroscopy (ARPES) could measure the spin
correlation function in principle. In real measurements, the
spectrum of a pure conduction layer and a pure surface
state, which can be measured separately, should be treated
as the background signal of the combined system and
subtracted. What remains is the convolution of the itinerant
electron’s spectral function and the spin correlation
function. These signals may have been detected but hide
in the ARPES data of 1T-TaSe2 and 1T-TaS2 [45,51].
Furthermore, raw ARPES spectra are a convolution
between the electron spectral function and the momentum
and energy resolution of the experiment. Deconvolution
procedures are usually used to mitigate noises from the
instruments [52,53]. Interestingly, the itinerant electron’s
spectral function in Eq. (3) serves as a known resolution
function instead. Similar deconvolution methods might be
applied here to decode the spin correlation even with
general fillings, once the intrinsic and intertwined electron
spectral functions are obtained properly.
Discussion.—We discuss other experimental conse-

quences of the surface spin liquid. The surface gapless

FIG. 4. (a) The momentum dependence of the spin correlation
Sðk; 0Þ. The inset shows the spinon excitation with zero energy
transfer, which is the origin of the enhanced intensities near the
circles with radius 2kF. Constant-energy images of the inter-
twined electron spectral function Aðk;ωÞ are calculated with
(b) ðδμ;ωÞ ¼ ð0.5;−0.5Þ and (c) ðδμ;ωÞ ¼ ð1.5;−1.5Þ.
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modes give an extra contribution to the low-temperature
heat capacity in this bulk-gapped material. It means that the
powderlike samples would have a higher heat capacity than
the single-crystal samples. As the large Kondo resonance
has already been observed in Pb-doped type-II terminated
surface [39], this suggests the local moment formation and
Mott physics, and further local probes such as nuclear
magnetic resonance, should be helpful to detect the spin
fluctuation on this surface. Thermal conductivity measure-
ment can be a useful diagnosis of the gapless charge-neutral
surface mode. There will be a magnetic contribution to
thermal conductivity from type-II surface, while there is
no magnetic thermal conductivity in type-I surface. The
comparison between these two surface thermal transports
can be quite insightful. The caveat is that the pure magnetic
contribution may be difficult to obtain and may mix with
the phonon transport. Since the monolayer 1T-TaS2 is
believed to be proximate to the Mott transition [42], it is
then reasonable to expect the type-II surface to be in the
weak Mott regime and the thermal Hall transport result to
apply [54]. Moreover, by varying the substrates to tune the
surface electron correlations, it is likely to access the
surface Mott transition and explore the universal transport
properties associated with the (continuous) transition
between the metal and surface spin liquid [22,23] directly.
The boundary terminated exotic liquid states are quite

rare in condensed matter systems. Most were conventional
states such as the Dirac-cone surface state for topological
insulator and Luttinger liquids for quantum Hall effects
[55–57]. For magnetic systems, the 2D spin-1 compound
FeSe was suggested to form a coupled Haldane chain
whose edge state would be a gapless spin-1=2 Heisenberg
chain [58] and is well understood. A possible exotic state
may emerge on the 2D surface of the spin-1 pyrochlore
antiferromagnet, Tl2Ru2O7, that was previously suggested
as a possible formation of Haldane chains in 3D [59]. This
would strongly depend on the orientation of Haldane
chains, the surface lattice, and the interacting model for
the emergent spin-1=2 degrees of freedom on the surface.
There can be a triangular lattice or a kagome lattice on the
(111) surface. In this regard, the type-II surface of 1T-TaS2
might be the first anomalous realization of exotic quantum
liquid phase. Finally, in addition to the surface termination,
the fault surface inside the bulk 1T-TaS2 could behave
much like the type-II termination and could further support
such an anomalous spin liquid.
To summarize, we explain the emergence of the spin-1=2

triangular lattice magnet on the type-II surface of the
1T-TaS2 and point out the possible existence of the spin
liquid state. This spin liquid is anomalously realized and
the experimental signatures are discussed.
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