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We explore the properties of chiral superfluid thin films coating a curved surface. Because of the vector
nature of the order parameter, a geometric gauge field emerges and leads to a number of observable effects
such as anomalous vortex-geometric interaction and curvature-induced mass and spin supercurrents. We
apply our theory to several well-known phases of chiral superfluid *He and derive experimentally
observable signatures. We further discuss the cases of flexible geometries where a soft surface can adapt
itself to compensate for the strain from the chiral superfluid. The proposed interplay between geometry and
chiral superfluid order provides a fascinating avenue to control and manipulate quantum states with strain.
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Geometric phases, rooted in the concept of parallel
transport and related to topology, figure prominently in a
startling variety of physical contexts, ranging from optics
and hydrodynamics to quantum field theory and condensed
matter physics [1]. In classical systems, for example, the
geometric phase shift of the Foucault pendulum is equal to
the enclosed solid angle subtended at Earth’s center [2].
Other classical examples of geometric phases include the
motion of deformable bodies [3] and tangent-plane order
on a curved substrate [4,5]. In quantum mechanics, the
geometric phases arise from slowly transporting an eigen-
state round a circuit C by varying parameters R in its
Hamiltonian H(R) [6]. For example, the geometric phase
of a single-electron Bloch wave function in the Brillouin
zone is essential for topological states of matter such as the
quantum Hall effect and topological insulators [7].

Beyond the single-electron picture, the concept of geo-
metric phase has become a defining property of topological
superconductors, where Cooper pairs can directly inherit
their geometric phases from the two paired electrons [8].
Chiral superconductors, a particularly interesting class of
topological superconductors [9], have received great atten-
tion due to their promise of hosting Majorana zero modes in
vortex cores and at edges, which are central to several
proposals for topological quantum computation [10,11].

In a chiral p-wave superconductor, the Cooper pairs
carry orbital angular momentum (OAM) of 7, and the order
parameter is a complex vector defined in the tangent plane
of a two-dimensional (2D) surface |¥) = y(&; £ ié;)/V/2
with €, and €, the local orthogonal basis and y the complex
amplitude [11-13]. Here the + sign denotes the chira-
lity and the direction of the OAM. When such an
order parameter with positive chirality evolves in a circuit
on a curved 2D surface (Fig. 1 as an illustration), a
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geometric phase arises according to the formula
(1/(¥|¥)) $- (P]i0,|¥)dl" = §.w,dl". Here w,=&;-0,&,
is the geometric connection whose curl is Gaussian
curvature (see Sec. S-I in the Supplemental Material, where
we present the mathematical foundation of geometric
connection [14]). Generalization to a chiral Z-wave order
parameter, describing a condensate of Cooper pairs with
orbital angular momentum £7, yields a geometric phase
¢ $o w,dI* [14]. The geometric connection w, may lead to
a number of intriguing effects, such as the geo-Meissner
effect [18] and the geometric Josephson effect [19], which
serve as definitive signatures of chiral superconductivity.

In this Letter, we study the interplay between chiral
superfluidity and geometry. We are motivated by the
following observations: (i) Chiral superfluids are charge-
neutral condensates. Therefore, the corresponding electro-
magnetic signature must be qualitatively different from that
of superconductors. (ii) Unlike chiral superconductors,
chiral superfluids are observed in nature (*He-A phase)
[20] and provide a test bed for our proposed geo-
metric induction theory. (iii) The study of interactions
between chiral-superfluid vortices and geometry, while

®\| Cooper pair
©/ with OAM 7

FIG. 1. Schematic illustration of transporting a vectorial order
on a curved surface. The height i(r, f) measures the deviation of
a curved surface from a plane.
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experimentally feasible, is still lacking in the literature.
(iv) Geometry may provide a practical knob to manipulate
novel quantum states, such as the Majorana zero mode in a
vortex. Thus it may offer a unique route to quantum
manipulation including braiding—central to topological
quantum computation [21,22].

The Letter is organized as follows: We first develop the
necessary formalism for 2D chiral superfluids covering a
curved surface. We then study the interaction between
vortices and geometry, aiming at controlling quantum
states with geometry. Next, we derive mass current
and spin current induced by Gaussian curvature in several
well-known phases of chiral superfluid *He, and we obtain
the associated electromagnetic signatures. Finally, we study
the quantum backaction of a chiral superfluid on a flexible
surface.

Emergent geometric gauge fields.—The order parameter
of a chiral Z-wave superfluid can be generically written as a
rank-Z tensor, i.e.,

Y=ye, Qey... ey, (1)
—_—

ftimes

where e, = (1/v/2)(&; + ié,) denote chiral basis, and
W= \/ﬁei" is the complex amplitude in terms of the
superfluid density p and phase 0. £ =1 (£ = 2...) corre-
sponds to the order parameter of chiral p-wave (d-wave...)
superfluids. In this Letter, we consider the positive chirality.
The negative chirality cases can be obtained by reversing
the sign of £ in our formulas.

On a curved surface (substrate), the minimal Lagrangian
of a chiral Z-wave superfluid reads

. ng
Ly =iy Dy ——
m

(D) (Djw) = V(lwl), (2)

where ¢/ is inverse the metric tensor g; j» m is the mass of a
Cooper pair, and V(|y]) is a symmetry-breaking potential.
Since the order parameter y (¢, r) depends on the choice of
orthonormal basis €; and €,, one needs to use the covariant
derivatives D, (u = 0, 1, 2) defined by

D, =0, +itw,, (3)

where w, = €, -9,€, is the geometric connection origi-
nating from parallel transport of a vector on a curved
surface [14]. The geometric connection @, is a geometric
gauge field akin to the electromagnetic vector potential,
with the Gaussian curvature playing the role of a magnetic
field. It was shown that a similar Lagrangian can
induce Hall viscosity [23] and thermal Hall effect [24].
From the covariant derivatives, we can obtain the total field
strength tensor T, = i[D,,D,| = -¢G,,, where G,, =
d,w, — 0,w, is the geometric field tensor, and corres-
pondingly, we define the electric- and magneticlike field
strength,

1 et 1%

& :E%Gﬂw BZE%GU,

(4)

with i, j taking values 1 or 2. We will discuss a number of
effects that originate from the geometric gauge field.

Anomalous vortex-geometry interaction.—To discuss
vortex physics, we rewrite Eq. (2) in terms of superfluid
density p and phase 6, i.e., set ¥ = \/,(_)e"‘9 to get

csf = lflp(a()@ + Lﬁa)o)
_ WpgY
2m

(0,0 + £w;)(0,0 + fw;) = V(p), (5)

where the potential V(p) = A(p —p)? guarantees that the
superfluid acquires a finite average density p. Upon
integrating out the fluctuations of density, one obtains

Ly = 72—0 (300 + £ay)? — % (VO + tw)?,  (6)

where y, = #%/2A indicates fluctuation strength and y, =
h%’p/m denotes the superfluid stiffness. Upon rescaling
temporal and spatial coordinates, we arrive at an effective
Lagrangian density of the Lorentz-invariant form,

14
2

To discuss vortex interactions and dynamics, we intro-
duce the alternative form

'Ceff = (6M9 + fa)ﬂ)z. (7)

1
[’eff = _277/6;24 + 5”(0”9 + l’ﬂwﬂ)v (8)

which gives Eq. (7) after integrating out the auxiliary field
&, Without loss of generality, one can take the phase 0 as a
smoothly fluctuating field, except at vortices where it winds
around 27 [25]. Therefore, one can write 9,0 = 9,0moom +
0,0yorex and plug it into the Eq. (8), yielding

1
‘Ceff == 2_7/4:;24 =+ Zjﬂ (apesmooth + a/4(9v0rtex + fwﬂ) (9)

Integrating out Gyo0m. We get the constraint for 9, = 0,
which can be automatically satisfied by the substitution
= e””’lal,a ;- Notice that, on a curved surface,
gt = eth /9, and a,, can be understood as a gauge field,
since a, — a, + d,I" does not change &. With this sub-
stitution, we can write the action in terms of a,,,

2
Seff = /dtdzr\/ﬁ |:—‘};L; + age’h’”dy(aﬂﬁvortex + fa)ﬂ) y

where f,, = d,a, —d,a, is the strength tensor of the a,
field. We reveal the physical meaning of the second term of
the above equation. Integrating the zero component
eoﬂ”ayaﬂavom over a region containing a vortex yields
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S dPr\/ge%0,0,00nex = $ dr - VOyonex = 2. We  thus
recognize eOV”G”ODHVOmX as the density of vortices, i.e.,
the time component of vortex current density

jéor = gﬂyayaugvortew (10)

One the other hand, we realize that eoﬂ”aﬂwb =B and
e"o,w, = & are the geometric field strength defined in
Eq. (4). Therefore, we identify a geometric current

Jaeo = E¥0,0, = (B,E', E%). (11)

Substituting vortex current and geometric current into the
effective action, we obtain the effective Lagrangian density
for vortices and geometry

['vor—geo = _4%/ /2411 + a/l(j%/or + jgeo)' (12)
This central equation governs the dynamics and inter-
actions of vortices and geometry in a chiral superfluid
covering a curved surface. There are three types of
interactions mediated by the gauge field a,, namely
“vortex-vortex” interaction, “‘geometry-geometry” interac-
tion, and “vortex-geometry” interaction. The vortex-geom-
etry interaction resembles the quasiparticle-geometry
coupling (the Wen-Zee term [26]) in quantum Hall effect
(QHE). In the Supplemental Material [14], we derive an
alternative form of Eq. (12), revealing the similarity and
differences between chiral superfluidity and QHE. While
the analogy has been realized in the literature [27,28], the
field theory of chiral superfluidity has two key differences
with QHE: the gauge field action is Maxwell-like instead of
Chern-Simons-like and Aharonov-Casher gauge potential
is absent in QHE. These differences lead to qualitatively
different electromagnetic responses.

In the static limit, Eq. (12) can be understood by analogy
to the Coulomb gas model: the Gaussian curvature 5(r)
plays the role of a nonuniform background charge distri-
bution and the vortices appear as pointlike sources with
electrostatic charges equal to their winding number. As a
result, the vortices tend to position themselves so that the
Gaussian curvature is screened: the negative (positive)
vortices on positive (negative) curvature.

Let us quantify the strength of vortex-geometric inter-
action by considering a vortex in a rotational symmetric 2D
surface specified by a three-dimensional vector R(r, @) =
(rcos g, rsing, hyexp (—r?/2r3)), where r and ¢ are
plane polar coordinates. Clearly, R(r, ¢) describes a static
Gaussian bump with a maximum height A, and spatial
extent ~ry. It is useful to characterize the deviation of the
bump from a plane in terms of a dimensionless aspect ratio
a= hy/ry. We can define local orthonormalized basis
vectors €, and €, by normalizing two orthogonal tangent
vectors t, = dR/dr and t, = dR/dg. The components of

(b)
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FIG. 2. (a) The spatial-dependent Gaussian curvature of a

Gaussian bump of aspect ratios @ = 1, 0.8, and 0.6. (b) The
corresponding spatial-dependent geometric potential, and E . ~
h2p,/m is a typical 2D vortex core energy [29].

the geometric gauge field introduced in Eq. (3) are given by
w; = &.-0;&,, ie, o, =0 and o, =—1//c(r) with
c(r) =1+ (a?r*/rj) exp (—(r*/r3)). Consequently, the
Gaussian curvature of the bump can be obtained
B(r) = (o /rge(r)?)(1 = (r*/r5)) exp (=r*/rg),  which
generates a geometric potential

VgeolF) = / PP aOBEN ) (13)

via the propagator I'(r’,r) of the gauge field a,. Here
g(r') = ¢(r) is the determinant of the metric. The geo-
metric potential embodies the vorticity and Gaussian
curvature attachment that was obtained previously in the
literature [14,23,28]. One can employ a conformal trans-
formation to obtain the propagator I'(r’,r) and then the
geometric potential [14]

2 © A
Velr) = 125 [F gy =1 gy

m J, r
Figure 2 shows the Gaussian curvature and geometric
potential of a Gaussian bump. Note that when the self-
energy of a vortex is considered, there exists an additional
geometric interaction (see details in the Supplemental
Material [14]).

The vortex-geometry interaction provides a unique route
to control the position of a vortex. And since a localized
Majorana mode is associated with a vortex in a chiral
superfluid, one can adiabatically braid Majorana modes by

Vortex B

r (um)

FIG. 3. (a) Schematic demonstration of quantum braiding by
engineering geometric curvature. (b) The geometric potential
versus distance with aspect ratio a = 0.8 for each valley.
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mechanically engineering geometric curvature, as is illus-
trated in Fig. 3(a). We plot the geometric potential (for
vortices) generated by two valleys in Fig. 3(b). It shows that
the geometric potential is comparable to the self-energy of a
vortex. Therefore, the vortex-geometry interaction offers a
promising route to perform topological quantum comput-
ing in the future.

Anomalous mass and spin supercurrent in *He super-
fluid thin film.—We apply geometric induction theory in
chiral-superfluid 3He film. While both *He and “He are
superfluids at sufficiently low temperature, the superflu-
idity in *He more closely resembles superconductivity than
the superfluid “He. Because, unlike “He, *He atoms are
fermions that have to be paired to become superfluid. In
3He the strong repulsive force exerted by the atomic cores
prevents s-wave pairing: instead, the pairs form an orbital
p-wave state, with L and S both equal to A. We will
consider the 3He-A phase where Cooper pairs possess finite
angular momentum in the z direction L,. Near a surface,
surface scattering favors the orbital angular momentum L,
perpendicular to the surface [30]. As a result, our geometric
induction theory applies.

In 'He-A (A,,A,) phase the spin-up and spin-down
components have the same chirality, and the corresponding
order parameter reads [20]

W= L e 1 ). (9

where py /| and 0, are the superfluid density and phase of
the spin-up and spin-down component, respectively.
Depending on the relative magnitude of p4 and p |, this
order parameter can describe *He-A phase (pr =p))s Ay
phase (either p; or p| vanishes), or A, phase (py # p)).
Assuming constant superfluid density, we can obtain the
Ginzburg-Landau (GL) Lagrangian density for *He super-
fluid thin film embedded on a curved surface

y ac y ac
L, :%(aﬂ«% + @, + A%)? +3l(a,,e¢ + @, — A)>2

+ interacting terms + potential..., (16)

where y4,, = (py/,/m) denotes the stiffness for the spin-
up, spin-down component; (Ag, AL) = (u;B;, & E'w’) is
the Aharonov-Casher (AC) gauge field arising due to a
magnetic moment g moving in an electromagnetic field
(E,B) [31,32].

One can obtain the current density of the spin-up and

spin-down components from the Lagrangian density £,
g = v1/410,04/) + @, £ AS°]. Defining a total mass
current j,' = j,I + j,f and a total spin current j, = jf, -

jﬁ yields the matrix formula

)= ) () o
Ju vt A

where y"/5 = v+ £7,, and the phase gradient term is
absorbed into the w, and Aj° by a gauge transformation.
One can immediately make several useful predictions from
Eq. (17). In 3He-A phase y* = 0 indicates that Gaussian
curvature drives a mass current, whereas the AC gauge field
drives a spin current. In 3He-A or A, phase, however, 7* is
finite so that either Gaussian curvature or an AC gauge field

can drive both mass current and spin current, simultane-
ously. Symmetry may allow a spin-spin interaction term

[33] such as j; j*¥, which effectively shifts the strength of
mass or spin stiffness in Eq. (17) [14].

Electromagnetic signature.—We obtain the electromag-
netic signature of chiral superfluids induced by geometric
gauge fields, and for definiteness we take He-A phase as
an example. Minimization of GL action with respect to the
four-vector potential A, = (¢, A) leads to the effective
electric charge and electric current density [14]

o, =-yuB(r), J.=ypxEr. (18
where B(r) and £(r) are the magnetic- and electriclike
geometric field strength in Eq. (4); 4 = ué; is the magnetic
moment perpendicular to the surface. The definition of the
geometric field strength leads to the Maxwell-like equation
V x €& = 9,8, which further guarantees the current con-
servation d,6. + V- J. = 0. Similar reasoning enables us
to obtain the effective electric charge density and current
density for several other chiral phases of He [14]. We
assume a superfluid density p ~ 10?2/m? and a Gaussian
curvature B~ 1/(100 ym)?. The effective charge density
can induce an electric field E ~ 107> V/m.

Geometric induction in a flexible superfluid thin film.—
We consider the geometric induction theory of a chiral
superfluid embedded on a flexible surface. The flexibility
of the surface provides additional degrees of freedom to
minimize the total GL action,

Sy = / dzdzr\/g{g(aﬂe+ Cw,)?
+ [% (0,h)? — ’% (v2h)2} } (19)

where the first and second term represent the Lagrangian of

chiral superfluid and geometry, respectively. To describe a

flexible surface, we use height A(x, y, )—the deviation of a

curved surface from a plane—to parametrize a 2D sur-

face. The geometric stiffnesses x, and k, measure the

softness of the surface [34]. The geometric connection
1

w, = 3&%70,(d3hd,h) embodies the essential interaction

between a chiral superfluid and geometry. Minimizing the
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FIG. 4. The energy-momentum dispersion of % is shown for
three stiffnesses «,. For comparison, a suspended graphene has a
stiffness k, = 1 eV. Numerically, we have assumed a reasonable
superfluid density p ~ 10??/m? and superfluid current gradient
I'=10"" J/m> We set # = 1 and ky, =0 in the plot.

GL action with respect to the &, one obtains the equation of
motion for geometry to linear order in height and super-
current density j,,

Ko0ih — k,V*h = £(0,05h)e%70, j*. (20)

The dynamic of geometry is qualitatively modified by
chiral superfluid. To quantify the influence of chiral
superfluidity on geometry, we study the energy-momentum
dispersion of & (called flexural modes) by assuming a
supercurrent in the x direction with a gradient I' = d,,j* in
the y direction. We obtain the modified dispersion relation
due to the backaction of the chiral superfluid,

E, = i\/&(k§+k%)2+£k§. (21)

Ko : Ko
In Fig. 4 we see that the energy-momentum dispersion in
the x direction becomes Dirac type at small momentum,
ie., k. < k.=+/|(T/k,|, with the critical speed v, =
/T /ky. Given £ = 1,T" = 1077 J/m?, and the geometric
stiffness ko~ 7.6 x 107® g/cm? (values taken from gra-
phene [35]), we can estimate the emergent critical
speed v, ~ 0.36 m/s.

Summary.—We have studied the intriguing interplay
between chiral superfluidity and geometry. A geometric
gauge field emerges and induces anomalous dynamics and
interactions. Based on chiral vortex-geometry interaction,
we proposed a mechanical approach to control the positions
of vortices, creating a new route for quantum braiding. We
further show that both mass and spin supercurrent can be
driven by a Gaussian curvature. And we also obtained
the geometry-induced electromagnetic signatures. Finally,
we study the backaction of chiral superfluidity on geometry.
We find that the dispersion of geometry shifts from quadratic
to linear due to the presence of chiral superfluidity.

Proposed effects illustrate the opportunities of controlling
quantum states with strain, e.g., pseudo-electromagnetic
fields in topological semimetals [36], uniaxial-pressure
control of competing orders [37], and strain-induced
superconductivity [38]. While it is known that strain can
affect the superconductivity, this Letter highlights the
opportunities to induce and modify spin and mass currents
in superfluids.
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