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We explore the properties of chiral superfluid thin films coating a curved surface. Because of the vector
nature of the order parameter, a geometric gauge field emerges and leads to a number of observable effects
such as anomalous vortex-geometric interaction and curvature-induced mass and spin supercurrents. We
apply our theory to several well-known phases of chiral superfluid 3He and derive experimentally
observable signatures. We further discuss the cases of flexible geometries where a soft surface can adapt
itself to compensate for the strain from the chiral superfluid. The proposed interplay between geometry and
chiral superfluid order provides a fascinating avenue to control and manipulate quantum states with strain.

DOI: 10.1103/PhysRevLett.129.016801

Geometric phases, rooted in the concept of parallel
transport and related to topology, figure prominently in a
startling variety of physical contexts, ranging from optics
and hydrodynamics to quantum field theory and condensed
matter physics [1]. In classical systems, for example, the
geometric phase shift of the Foucault pendulum is equal to
the enclosed solid angle subtended at Earth’s center [2].
Other classical examples of geometric phases include the
motion of deformable bodies [3] and tangent-plane order
on a curved substrate [4,5]. In quantum mechanics, the
geometric phases arise from slowly transporting an eigen-
state round a circuit C by varying parameters R in its
Hamiltonian ĤðRÞ [6]. For example, the geometric phase
of a single-electron Bloch wave function in the Brillouin
zone is essential for topological states of matter such as the
quantum Hall effect and topological insulators [7].
Beyond the single-electron picture, the concept of geo-

metric phase has become a defining property of topological
superconductors, where Cooper pairs can directly inherit
their geometric phases from the two paired electrons [8].
Chiral superconductors, a particularly interesting class of
topological superconductors [9], have received great atten-
tion due to their promise of hosting Majorana zero modes in
vortex cores and at edges, which are central to several
proposals for topological quantum computation [10,11].
In a chiral p-wave superconductor, the Cooper pairs

carry orbital angular momentum (OAM) of ℏ, and the order
parameter is a complex vector defined in the tangent plane
of a two-dimensional (2D) surface jΨi ¼ ψðê1 � iê2Þ=

ffiffiffi
2

p
with ê1 and ê2 the local orthogonal basis and ψ the complex
amplitude [11–13]. Here the � sign denotes the chira-
lity and the direction of the OAM. When such an
order parameter with positive chirality evolves in a circuit
on a curved 2D surface (Fig. 1 as an illustration), a

geometric phase arises according to the formula
ð1=hΨjΨiÞHChΨji∂μjΨidlμ¼H

Cωμdlμ. Here ωμ¼ ê1 ·∂μê2
is the geometric connection whose curl is Gaussian
curvature (see Sec. S-I in the Supplemental Material, where
we present the mathematical foundation of geometric
connection [14]). Generalization to a chiral l-wave order
parameter, describing a condensate of Cooper pairs with
orbital angular momentum lℏ, yields a geometric phase
l
H
C ωμdlμ [14]. The geometric connection ωμ may lead to

a number of intriguing effects, such as the geo-Meissner
effect [18] and the geometric Josephson effect [19], which
serve as definitive signatures of chiral superconductivity.
In this Letter, we study the interplay between chiral

superfluidity and geometry. We are motivated by the
following observations: (i) Chiral superfluids are charge-
neutral condensates. Therefore, the corresponding electro-
magnetic signature must be qualitatively different from that
of superconductors. (ii) Unlike chiral superconductors,
chiral superfluids are observed in nature (3He-A phase)
[20] and provide a test bed for our proposed geo-
metric induction theory. (iii) The study of interactions
between chiral-superfluid vortices and geometry, while

h(r, t)

̂e2
̂e1

̂e2
̂e1

Cooper pair  
with OAM 

FIG. 1. Schematic illustration of transporting a vectorial order
on a curved surface. The height hðr; tÞ measures the deviation of
a curved surface from a plane.
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experimentally feasible, is still lacking in the literature.
(iv) Geometry may provide a practical knob to manipulate
novel quantum states, such as the Majorana zero mode in a
vortex. Thus it may offer a unique route to quantum
manipulation including braiding—central to topological
quantum computation [21,22].
The Letter is organized as follows: We first develop the

necessary formalism for 2D chiral superfluids covering a
curved surface. We then study the interaction between
vortices and geometry, aiming at controlling quantum
states with geometry. Next, we derive mass current
and spin current induced by Gaussian curvature in several
well-known phases of chiral superfluid 3He, and we obtain
the associated electromagnetic signatures. Finally, we study
the quantum backaction of a chiral superfluid on a flexible
surface.
Emergent geometric gauge fields.—The order parameter

of a chiral l-wave superfluid can be generically written as a
rank-l tensor, i.e.,

Ψ ¼ ψϵ� ⊗ ϵ�… ⊗ ϵ�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ltimes

; ð1Þ

where ϵ� ¼ ð1= ffiffiffi
2

p Þðê1 � iê2Þ denote chiral basis, and
ψ ¼ ffiffiffi

ρ
p

eiθ is the complex amplitude in terms of the
superfluid density ρ and phase θ. l ¼ 1 (l ¼ 2…) corre-
sponds to the order parameter of chiral p-wave (d-wave…)
superfluids. In this Letter, we consider the positive chirality.
The negative chirality cases can be obtained by reversing
the sign of l in our formulas.
On a curved surface (substrate), the minimal Lagrangian

of a chiral l-wave superfluid reads

Lsf ¼ iℏψ�Dtψ −
ℏ2gij

2m
ðDiψÞ�ðDjψÞ − Vðjψ jÞ; ð2Þ

where gij is inverse the metric tensor gij, m is the mass of a
Cooper pair, and Vðjψ jÞ is a symmetry-breaking potential.
Since the order parameter ψðt; rÞ depends on the choice of
orthonormal basis ê1 and ê2, one needs to use the covariant
derivatives Dμ (μ ¼ 0, 1, 2) defined by

Dμ ¼ ∂μ þ ilωμ; ð3Þ
where ωμ ¼ ê1 · ∂μê2 is the geometric connection origi-
nating from parallel transport of a vector on a curved
surface [14]. The geometric connection ωμ is a geometric
gauge field akin to the electromagnetic vector potential,
with the Gaussian curvature playing the role of a magnetic
field. It was shown that a similar Lagrangian can
induce Hall viscosity [23] and thermal Hall effect [24].
From the covariant derivatives, we can obtain the total field
strength tensor Tμν ¼ i½Dμ; Dν� ¼ −lGμν, where Gμν ¼
∂μων − ∂νωμ is the geometric field tensor, and corres-
pondingly, we define the electric- and magneticlike field
strength,

Ei ¼ 1

2

ϵiμνffiffiffi
g

p Gμν; B ¼ 1

2

ϵ0ijffiffiffi
g

p Gij; ð4Þ

with i, j taking values 1 or 2. We will discuss a number of
effects that originate from the geometric gauge field.
Anomalous vortex-geometry interaction.—To discuss

vortex physics, we rewrite Eq. (2) in terms of superfluid
density ρ and phase θ, i.e., set Ψ ¼ ffiffiffi

ρ
p

eiθ to get

Lsf ¼ iℏρð∂0θ þ lω0Þ

−
ℏ2ρgij

2m
ð∂iθ þ lωiÞð∂jθ þ lωjÞ − VðρÞ; ð5Þ

where the potential VðρÞ ¼ Aðρ − ρ̄Þ2 guarantees that the
superfluid acquires a finite average density ρ̄. Upon
integrating out the fluctuations of density, one obtains

Lsf ¼
γ0
2
ð∂0θ þ lω0Þ2 −

γs
2
ð∇θ þ lωÞ2; ð6Þ

where γ0 ¼ ℏ2=2A indicates fluctuation strength and γs ¼
ℏ2ρ̄=m denotes the superfluid stiffness. Upon rescaling
temporal and spatial coordinates, we arrive at an effective
Lagrangian density of the Lorentz-invariant form,

Leff ¼
γ

2
ð∂μθ þ lωμÞ2: ð7Þ

To discuss vortex interactions and dynamics, we intro-
duce the alternative form

Leff ¼ −
1

2γ
ξ2μ þ ξμð∂μθ þ lωμÞ; ð8Þ

which gives Eq. (7) after integrating out the auxiliary field
ξμ. Without loss of generality, one can take the phase θ as a
smoothly fluctuating field, except at vortices where it winds
around 2π [25]. Therefore, one can write ∂μθ ¼ ∂μθsmooth þ
∂μθvortex and plug it into the Eq. (8), yielding

Leff ¼ −
1

2γ
ξ2μ þ ξμð∂μθsmooth þ ∂μθvortex þ lωμÞ: ð9Þ

Integrating out θsmooth, we get the constraint for ∂μξμ ¼ 0,
which can be automatically satisfied by the substitution
ξμ ≡ εμνλ∂νaλ. Notice that, on a curved surface,
εμνλ ≡ ϵμνλ=

ffiffiffi
g

p
, and aμ can be understood as a gauge field,

since aμ → aμ þ ∂μΓ does not change ξμ. With this sub-
stitution, we can write the action in terms of aμ,

Seff ¼
Z

dtd2r
ffiffiffi
g

p �
−
f2μν
4γ

þ aλελνμ∂νð∂μθvortex þ lωμÞ
�
;

where fμν ¼ ∂μaν − ∂νaμ is the strength tensor of the aμ
field. We reveal the physical meaning of the second term of
the above equation. Integrating the zero component
ε0μν∂ν∂μθvortex over a region containing a vortex yields
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R
d2r

ffiffiffi
g

p
ε0μν∂μ∂νθvortex ¼

H
dr · ∇θvortex ¼ 2π. We thus

recognize ε0μν∂μ∂νθvortex as the density of vortices, i.e.,
the time component of vortex current density

jλvor ¼ ελμν∂μ∂νθvortex: ð10Þ

One the other hand, we realize that ε0μν∂μων ¼ B and
εiμν∂μων ¼ Ei are the geometric field strength defined in
Eq. (4). Therefore, we identify a geometric current

jλgeo ¼ ελμν∂μων ¼ ðB; E1; E2Þ: ð11Þ

Substituting vortex current and geometric current into the
effective action, we obtain the effective Lagrangian density
for vortices and geometry

Lvor-geo ¼ −
1

4γ
f2μν þ aλðjλvor þ jλgeoÞ: ð12Þ

This central equation governs the dynamics and inter-
actions of vortices and geometry in a chiral superfluid
covering a curved surface. There are three types of
interactions mediated by the gauge field aμ, namely
“vortex-vortex” interaction, “geometry-geometry” interac-
tion, and “vortex-geometry” interaction. The vortex-geom-
etry interaction resembles the quasiparticle-geometry
coupling (the Wen-Zee term [26]) in quantum Hall effect
(QHE). In the Supplemental Material [14], we derive an
alternative form of Eq. (12), revealing the similarity and
differences between chiral superfluidity and QHE. While
the analogy has been realized in the literature [27,28], the
field theory of chiral superfluidity has two key differences
with QHE: the gauge field action is Maxwell-like instead of
Chern-Simons–like and Aharonov-Casher gauge potential
is absent in QHE. These differences lead to qualitatively
different electromagnetic responses.
In the static limit, Eq. (12) can be understood by analogy

to the Coulomb gas model: the Gaussian curvature BðrÞ
plays the role of a nonuniform background charge distri-
bution and the vortices appear as pointlike sources with
electrostatic charges equal to their winding number. As a
result, the vortices tend to position themselves so that the
Gaussian curvature is screened: the negative (positive)
vortices on positive (negative) curvature.
Let us quantify the strength of vortex-geometric inter-

action by considering a vortex in a rotational symmetric 2D
surface specified by a three-dimensional vector Rðr;φÞ ¼
ðr cosφ; r sinφ; h0 exp ð−r2=2r20ÞÞ, where r and φ are
plane polar coordinates. Clearly, Rðr;φÞ describes a static
Gaussian bump with a maximum height h0 and spatial
extent ∼r0. It is useful to characterize the deviation of the
bump from a plane in terms of a dimensionless aspect ratio
α≡ h0=r0. We can define local orthonormalized basis
vectors êr and êφ by normalizing two orthogonal tangent
vectors tr ¼ ∂R=∂r and tφ ¼ ∂R=∂φ. The components of

the geometric gauge field introduced in Eq. (3) are given by
ωi ¼ êr · ∂iêφ, i.e., ωr ¼ 0 and ωφ ¼ −1=

ffiffiffiffiffiffiffiffiffi
cðrÞp

with
cðrÞ≡ 1þ ðα2r2=r20Þ exp ð−ðr2=r20ÞÞ. Consequently, the
Gaussian curvature of the bump can be obtained
BðrÞ ¼ ðα2=r20cðrÞ2Þð1 − ðr2=r20ÞÞ exp ð−r2=r20Þ, which
generates a geometric potential

VgeoðrÞ ¼
Z

d2r0
ffiffiffiffiffiffiffiffiffiffi
gðr0Þ

p
Bðr0ÞΓðr; r0Þ ð13Þ

via the propagator Γðr0; rÞ of the gauge field aμ. Here
gðr0Þ ¼ cðr0Þ is the determinant of the metric. The geo-
metric potential embodies the vorticity and Gaussian
curvature attachment that was obtained previously in the
literature [14,23,28]. One can employ a conformal trans-
formation to obtain the propagator Γðr0; rÞ and then the
geometric potential [14]

VgeoðrÞ ¼
ℏ2ρs
m

Z
∞

r
dr0

ffiffiffiffiffiffiffiffiffiffi
cðr0Þp

− 1

r0
: ð14Þ

Figure 2 shows the Gaussian curvature and geometric
potential of a Gaussian bump. Note that when the self-
energy of a vortex is considered, there exists an additional
geometric interaction (see details in the Supplemental
Material [14]).
The vortex-geometry interaction provides a unique route

to control the position of a vortex. And since a localized
Majorana mode is associated with a vortex in a chiral
superfluid, one can adiabatically braid Majorana modes by
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FIG. 2. (a) The spatial-dependent Gaussian curvature of a
Gaussian bump of aspect ratios α ¼ 1, 0.8, and 0.6. (b) The
corresponding spatial-dependent geometric potential, and Ecore ≈
ℏ2ρs=m is a typical 2D vortex core energy [29].
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FIG. 3. (a) Schematic demonstration of quantum braiding by
engineering geometric curvature. (b) The geometric potential
versus distance with aspect ratio α ¼ 0.8 for each valley.
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mechanically engineering geometric curvature, as is illus-
trated in Fig. 3(a). We plot the geometric potential (for
vortices) generated by two valleys in Fig. 3(b). It shows that
the geometric potential is comparable to the self-energy of a
vortex. Therefore, the vortex-geometry interaction offers a
promising route to perform topological quantum comput-
ing in the future.
Anomalous mass and spin supercurrent in 3He super-

fluid thin film.—We apply geometric induction theory in
chiral-superfluid 3He film. While both 3He and 4He are
superfluids at sufficiently low temperature, the superflu-
idity in 3He more closely resembles superconductivity than
the superfluid 4He. Because, unlike 4He, 3He atoms are
fermions that have to be paired to become superfluid. In
3He the strong repulsive force exerted by the atomic cores
prevents s-wave pairing: instead, the pairs form an orbital
p-wave state, with L and S both equal to ℏ. We will
consider the 3He-A phase where Cooper pairs possess finite
angular momentum in the z direction Lz. Near a surface,
surface scattering favors the orbital angular momentum Lz
perpendicular to the surface [30]. As a result, our geometric
induction theory applies.
In 3He-A (A1;A2) phase the spin-up and spin-down

components have the same chirality, and the corresponding
order parameter reads [20]

ΨA ¼ 1ffiffiffi
2

p ðêx þ iêyÞð ffiffiffiffiffi
ρ↑

p
eiθ↑ j ↑i þ ffiffiffiffiffi

ρ↓
p

eiθ↓ j↓iÞ; ð15Þ

where ρ↑=↓ and θ↑=↓ are the superfluid density and phase of
the spin-up and spin-down component, respectively.
Depending on the relative magnitude of ρ↑ and ρ↓, this
order parameter can describe 3He-A phase (ρ↑ ¼ ρ↓), A1

phase (either ρ↑ or ρ↓ vanishes), or A2 phase (ρ↑ ≠ ρ↓).
Assuming constant superfluid density, we can obtain the
Ginzburg-Landau (GL) Lagrangian density for 3He super-
fluid thin film embedded on a curved surface

LA ¼ γ↑
2
ð∂μθ↑ þ ωμ þAac

μ Þ2 þ γ↓
2
ð∂μθ↓ þ ωμ −Aac

μ Þ2

þ interacting termsþ potential…; ð16Þ

where γ↑=↓ ¼ ðρ↑=↓=mÞ denotes the stiffness for the spin-
up, spin-down component; ðAac

0 ;Aac
k Þ ¼ ðμiBi; εijkEiμjÞ is

the Aharonov-Casher (AC) gauge field arising due to a
magnetic moment μ moving in an electromagnetic field
ðE;BÞ [31,32].
One can obtain the current density of the spin-up and

spin-down components from the Lagrangian density LA

j↑=↓μ ¼ γ↑=↓½∂μθ↑=↓ þ ωμ �Aac
μ �. Defining a total mass

current jmμ ¼ j↑μ þ j↓μ and a total spin current jsμ ¼ j↑μ −
j↓μ yields the matrix formula

�
jmμ
jsμ

�
¼

�
γm γs

γs γm

�
·

�
ωμ

Aac
μ

�
; ð17Þ

where γm=s ≡ γ↑ � γ↓, and the phase gradient term is
absorbed into the ωμ and Aac

μ by a gauge transformation.
One can immediately make several useful predictions from
Eq. (17). In 3He-A phase γs ¼ 0 indicates that Gaussian
curvature drives a mass current, whereas the AC gauge field
drives a spin current. In 3He-A1 or A2 phase, however, γs is
finite so that either Gaussian curvature or an AC gauge field
can drive both mass current and spin current, simultane-
ously. Symmetry may allow a spin-spin interaction term
[33] such as j↑μjμ↓, which effectively shifts the strength of
mass or spin stiffness in Eq. (17) [14].
Electromagnetic signature.—We obtain the electromag-

netic signature of chiral superfluids induced by geometric
gauge fields, and for definiteness we take 3He-A phase as
an example. Minimization of GL action with respect to the
four-vector potential Aμ ¼ ðϕ;AÞ leads to the effective
electric charge and electric current density [14]

σc ¼ −γsμBðrÞ; Jc ¼ γsμ × EðrÞ; ð18Þ

where BðrÞ and EðrÞ are the magnetic- and electriclike
geometric field strength in Eq. (4); μ ¼ μê3 is the magnetic
moment perpendicular to the surface. The definition of the
geometric field strength leads to the Maxwell-like equation
∇ × E ¼ ∂tB, which further guarantees the current con-
servation ∂tσc þ ∇ · Jc ¼ 0. Similar reasoning enables us
to obtain the effective electric charge density and current
density for several other chiral phases of 3He [14]. We
assume a superfluid density ρ ≈ 1022=m2 and a Gaussian
curvature B ≈ 1=ð100 μmÞ2. The effective charge density
can induce an electric field E ≈ 10−3 V=m.
Geometric induction in a flexible superfluid thin film.—

We consider the geometric induction theory of a chiral
superfluid embedded on a flexible surface. The flexibility
of the surface provides additional degrees of freedom to
minimize the total GL action,

Stot ¼
Z

dtd2r
ffiffiffi
g

p �
γ

2
ð∂μθ þ lωμÞ2

þ
�
κ0
2
ð∂thÞ2 −

κr
2
ð∇2hÞ2

�	
; ð19Þ

where the first and second term represent the Lagrangian of
chiral superfluid and geometry, respectively. To describe a
flexible surface, we use height hðx; y; tÞ—the deviation of a
curved surface from a plane—to parametrize a 2D sur-
face. The geometric stiffnesses κ0 and κr measure the
softness of the surface [34]. The geometric connection
ωμ ¼ 1

2
ε0βγ∂γð∂βh∂μhÞ embodies the essential interaction

between a chiral superfluid and geometry. Minimizing the
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GL action with respect to the h, one obtains the equation of
motion for geometry to linear order in height and super-
current density jμ,

κ0∂
2
t h − κr∇4h ¼ lð∂μ∂βhÞε0βγ∂γjμ: ð20Þ

The dynamic of geometry is qualitatively modified by
chiral superfluid. To quantify the influence of chiral
superfluidity on geometry, we study the energy-momentum
dispersion of h (called flexural modes) by assuming a
supercurrent in the x direction with a gradient Γ≡ ∂yjx in
the y direction. We obtain the modified dispersion relation
due to the backaction of the chiral superfluid,

E� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κr
κ0

ðk2x þ k2yÞ2 þ
lΓ
κ0

k2x

s
: ð21Þ

In Fig. 4 we see that the energy-momentum dispersion in
the x direction becomes Dirac type at small momentum,
i.e., kx ≪ kc ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijlΓ=κrj
p

, with the critical speed vc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
lΓ=κ0

p
. Given l ¼ 1, Γ ¼ 10−7 J=m2, and the geometric

stiffness κ0 ≈ 7.6 × 10−8 g=cm2 (values taken from gra-
phene [35]), we can estimate the emergent critical
speed vc ≈ 0.36 m=s.
Summary.—We have studied the intriguing interplay

between chiral superfluidity and geometry. A geometric
gauge field emerges and induces anomalous dynamics and
interactions. Based on chiral vortex-geometry interaction,
we proposed a mechanical approach to control the positions
of vortices, creating a new route for quantum braiding. We
further show that both mass and spin supercurrent can be
driven by a Gaussian curvature. And we also obtained
the geometry-induced electromagnetic signatures. Finally,
we study the backaction of chiral superfluidity on geometry.
We find that the dispersion of geometry shifts fromquadratic
to linear due to the presence of chiral superfluidity.

Proposed effects illustrate the opportunities of controlling
quantum states with strain, e.g., pseudo-electromagnetic
fields in topological semimetals [36], uniaxial-pressure
control of competing orders [37], and strain-induced
superconductivity [38]. While it is known that strain can
affect the superconductivity, this Letter highlights the
opportunities to induce and modify spin and mass currents
in superfluids.
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