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We show that the simultaneous driving of a polariton condensate with both nonresonant and nth order
resonant pump frequencies allows for a generic mechanism of breather formation. From this we construct
for the second order resonance a family of exotic breathers with nontrivial discrete order of rotational
symmetry. Finally, we demonstrate the spontaneous emergence of both crystalline and glassy orderings of
lattices of polygonal breathers, depending on the degree of polygonal excitations at the lattice sites.
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Introduction.—The basic nonlinear excitations of Bose-
Einstein condensates (BECs) have been studied in detail
for decades [1–10]. However, relatively little is understood
about their breather solutions [11]. In atomic BECs, there
are fundamental restrictions on the formation and stability
of breathers, due to their intrinsic tendency toward thermo-
dynamic equilibrium. Solutions with sustained density
oscillations can be constructed by the superposition of the
ground state with one of the eigenstates of the Bogoliubov
excitations. However, these simple periodic solutions are
only persistent in the limit of zero amplitude so as to avoid
damping via nonlinear spectral broadening, and lose
periodicity as modes are mixed [11]. Other simple breath-
ing solutions have been constructed with the help of
explicit periodicity of the potential in space [12] or of
the interaction term in time [13]. In a nonperiodic system, it
was shown that in two spatial dimensions the nonlinear
Schrödinger equation under harmonic trapping admits
solutions in which the potential energy oscillates without
damping, due to the SO(2,1) dynamical symmetry of that
system [14,15]. This has recently been extended exper-
imentally and theoretically showing that the SO(2,1)
symmetric system also allows particular solutions that
are periodic in the wave function evolution [11,16].
Because of its inherent nonequilibriation and strong

nonlinearity, BEC of exciton-polariton (polariton) quasi-
particles has quickly established itself as a central object of
study in nonequilibrium quantum dynamics [17–19]. By
their nature these condensates are not required to conserve
particle number, their populations instead ebbing and
flowing as a part of their dynamics. Even in the steady
state the constant dissipation and excitation of quasipar-
ticles makes for a quantum fluidic system in which
stationary flows connect spatial regions from where par-
ticles are created to where they dissipate. To form and
sustain a polariton condensate, the cavity in which it lives
must be forced optically. Thus, understanding the funda-
mental repercussions of the forcing type is among the most

fundamental problems in the rapidly growing field of
polaritonics.
In this Letter, we show that in polariton BECs a generic

mechanism of breather formation arises from the combi-
nation of nonresonant and resonant forcing, due to the
competition between the distinct symmetries associated
with these forcing types. Focusing on the special case of
second-order resonance (maximizing the tension between
forcing symmetries), we both explain the recent discovery
of breathing ring solitons [20], and construct a new family
of breathers, in which rotational symmetry is spontaneously
broken in lieu of polygonal (dihedral) spatial symmetry,
with the degree of the resulting polygonal breathers set by
the spatial extent of resonant pumping. We show that
lattices of the emergent polygonal breathers can sponta-
neously adopt crystalline or glassy orderings of their
orientation, in spinless analogs of ferromagnetic and spin
glass orderings.
Generic breathing mechanism.—A prototypical example

of the condensed Bose gas driven far from equilibrium, the
dynamics of the polariton condensate can be well described
by a generalized complex Ginzburg-Landau equation. This
can be written nondimensionally for the condensate wave
function ψðr; tÞ and for the reservoir of uncondensed
particles NRðr; tÞ, as [18,21–24]:

i∂tψ ¼ −ð1 − iηNRÞ∇2ψ þ jψ j2ψ þ gNRψ

þ iðNR − γÞψ þ iP̄ψ�ðn−1Þ ð1Þ
∂tNR ¼ P − ð1þ bjψ j2ÞNR; ð2Þ

where g characterizes the polariton-exciton interaction
strength, η the energy relaxation [25,26], b is proportional
to the ratio of polariton-reservoir to polariton-polariton
interactions and inversely proportional to the reservoir
scattering rate, and where γ represents rate of dissipation.
The nonresonant pump source is given by pump intensity
Pðr; tÞ, and the resonant pumping (at n∶1 resonance with
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the natural frequency of the cavity) is described by the
pumping intensity P̄ðr; tÞ [27]. In these dimensionless
units, the healing length is unity while the unit of length
is 1 μm.
We begin by focusing on the regime in which the

reservoir dynamics react quickly to the condensate wave
function (∂tNR ≈ 0), in which the energy relaxation η ≪ 1,
and in which b ≈ 1. From here we insert NR ¼ P=ð1þ
jψ j2Þ into Eq. (2); focusing first on the behavior of the
system in zero-dimensional space, the dynamics of the
polariton condensate are reduced to the following complex
ordinary differential equation:

i _ψ ¼ ð1− iγÞjψ j2 þ jψ j4 − iγþ ðgþ iÞP
ðjψ j2 þ 1Þ=ψ þ iP̄ψ�ðn−1Þ: ð3Þ

Introducing the Madelung transformation ψðtÞ ¼ffiffiffiffiffiffiffiffi
ρðtÞp

exp ½iθðtÞ� and separating real and imaginary parts
of the resulting equation, we can rewrite Eq. (3) as the real,
coupled ordinary differential equations

_ρ ¼ 2
P̄ cosðnθÞðρn

2 þ ρ
n
2
þ1Þ þ ðP − γÞρ − γρ2

ð1þ ρÞ ; ð4Þ

_θ ¼ P̄ sinðnθÞðρn
2
−1 − ρ

n
2Þ − gP − ρ − ρ2

ð1þ ρÞ : ð5Þ

Physically, ρ represents the time dependent condensate
wave function density and θ its phase. Equations (4) and (5)
are not explicitly solvable, but in the limit of small resonant
pump strength P̄, we can view solutions as perturbations of
the steady states familiar to purely nonresonantly pumped
condensates. Such nonzero steady states have constant
phase evolution θ ¼ μt, with frequency μ. Substituting into
Eq. (5) and setting n ¼ 2 yields the small P̄ approximation
for the condensate density under simultaneous nonresonant
and second-order resonant forcing

ρðtÞ ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξðtÞ2 − 4½gPþ ξðtÞ�

q
− ξðtÞ − 1

�
ð6Þ

in which ξðtÞ ¼ 1þ μþ P̄ sinð2μtÞ. From here, it is clear
that for P̄ ¼ 0, ξðtÞ reduces to μþ 1 and Eq. (6) returns the
familiar steady state solution, with the density fixed by the
parameterization. However, for P̄ > 0 oscillations take
hold, with period given by T ¼ π=μ, and with amplitude
scaling with P̄. Later we will see that even in full 2D
simulations of Eqs. (1) and (2), these simple predictions
remain robust.
In the other extreme is the scenario of very strong

resonant pumping. In this case we expect n fixed points;
setting the left-hand sides of Eqs. (4) and (5) to zero yields
n solutions for θ and one solution for ρ. These are the nth
order phase locking solutions. To probe the full range of
behaviors beyond these extreme regimes, we numerically

integrate Eqs. (4) and (5). As this case is of the greatest
interest, we again fix n ¼ 2. Integrating for many initial
conditions fρi; θig, phase space trajectories are collected
for varying resonant pump strength P̄ (with other system
parameters fixed), shown in Fig. 1 (top). The bottom panel
of that figure shows some of the same trajectories (matched
in color), but represented in the complex plane as opposed
to the phase space. In these spaces geometrical interpre-
tations of the effect of resonant pumping, and the resulting
density oscillations, become clear. As expected, for P̄ ¼ 0
(not shown), there is a single fixed point attractor corre-
sponding to a single point of nonzero phase velocity and
nonzero density in the phase space, which corresponds to a
circular trajectory in the complex plane; this is merely the
plane wave solution. At the other extreme, high resonant
forcing (orange) leads to a set of two fixed point attractors
(resolved in the complex plane) at states with fixed density
and null phase velocity (resolved in phase space).
The most interesting behavior is seen between these

extremes. As the resonant forcing strength is increased
gradually from zero, the smooth “stretching” of the closed
state trajectories in the complex plane is observed, in the
directions of the symmetry broken fixed points that then
eventually form. In this way, the geometry of the resonant

FIG. 1. Top: Trajectories of Eqs. (4) and (5) traced numerically
in phase space from many initial conditions, using γ ¼ 1=2,
P ¼ 5, and g ¼ 1, and various second-order resonant pump
strengths P̄ ¼ f1; 5; 10; 20g. The line of zero phase velocity is
marked (dashed black). Bottom: The same phase trajectories are
plotted in the complex plane showing transition from small,
nearly uniform oscillations driven by small resonant pumping
(blue), to the dual fixed point attractors seen under high resonant
forcing (orange). In between, both fixed points and large
nonuniform density oscillations are seen (red).
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forcing terms in Eqs. (4) and (5) are clear: in the complex
plane the terms P̄ cos ðnθÞ and P̄ sin ðnθÞ are linear scaling
operators, acting along n axes separated by 2π=n. Thus, we
should expect an n-fold stretching of the circular orbit as P̄
is increased from zero, and for increasing P̄ we should
expect the density increasingly dependent on the phase with
degeneracy n. Figure 1 confirms these behaviors. For small
resonant pumping, we see slight n-fold deformation of the
orbit in the complex plane (blue), which becomes severely
deformed (but with equal symmetry) as the resonant
pumping is increased (red). That case also shows the
overlap between the limit cycle and phase locked regimes.
We note that the same procedure for any nth order
resonance yields the same fundamental result, but showing
n-fold symmetry in the complex plane. We confirm this in
numerical experiments for n ∈ f1;…; 5g. The warping of
the phase space trajectories has more than a geometric
effect: the noncircular closed path in the complex state
space is trivially indicative of density oscillations in the
wave function. Thus, it can be useful to think of the orbit
deformations as “driving” the density oscillations (and
which fully characterizes their wave forms). In this way,
breathing is a result of the tension between the two natural
states of competing symmetries, the U(1) phase symmetry
of P̄ ¼ 0, and the Zn symmetry of large P̄. In the
Supplemental Material [28] we derive the conditions for
the frequency locking in our system with n ¼ 2 close to the
condensation threshold and perform a linear stability
analysis of the rest state to quantify the contributions of
different types of excitation to the dispersion relation.
2D breathers.—So far we have established that under the

simultaneous resonant and nonresonant forcing of a polar-
iton condensate, there generically exists a regime of density
oscillations in between the plane wave and phase locked
solutions. We now turn to the full, spatially extended (2D)
system. In a system phase locked by strong second-order
resonant forcing, there are two equally stable phases
differing by π, so that stable one-dimensional topological
defects naturally form between domains of opposite phase
(domain walls or “dark solitons”). For n > 2, more phases
become stable, quickly approximating the U(1) symmetry.
Thus, from the perspective of pattern formation, the
second-order resonant forcing is the most extreme case,
as the associated Z2 symmetry is the starkest departure
from U(1) while maintaining the necessary degeneracy.
Thus, while the our breathing mechanism applies to higher
resonances, in the 2D case we will focus only the second-
order resonant forcing.
We begin this by considering the condensate forced

uniformly with nonresonant and second-order resonant
(from this point “resonant”) forcing. It was recently shown
that ring-shaped breathers can form in such a system [20],
and we now show that these result from the breathing
mechanism described in this Letter. In full numerical
integration of Eqs. (1) and (2) [27], we prepare a uniform

disk-shaped condensate pumped with resonant forcing high
enough to reach the regime of phase locking. By phase
imprinting a perturbation, we observe the excitations of a
breathing ring soliton, as shown in Fig. 2, which have the
periodicity π=μ as predicted in the zero-dimensional
problem. These structures may thus be interpreted as the
localized excitations of the phase locked state into the limit
cycle in a phase space which, as in the zero-dimensional
space, admits both simultaneously.
Polygon breathers.—One of the powers of polaritonic

systems is that pumping can take on any optically feasible
profile. We can thus consider the case of spatially depen-
dent resonant forcing, so that the degree to which the phase
is symmetry broken can vary spatially.
We thus consider the scenario of a large disk-shaped

region of uniform nonresonant pumping, with a resonant
pump of Gaussian profile P̄ exp½−αr2� at the center of that
region, with α characterizing the inverse width of the pump,
so that the degree of the symmetry breaking of the phase
depends on the radial distance from the center of the pump.
This is the most extreme when P̄ and α are chosen such that
the condensate wave function is forced into the phase
locked regime at the center, but can be seen to transition
into the regime in which the symmetry breaking is
negligible. With direct numerical integration of Eqs. (1)
and (2), we simulate this geometry. For large α (small spot),
density oscillations are driven around the center at the
radius at which the condensate is in the breathing regime,
forming a breathing ring.
For larger resonant pump spots, however, the behavior

changes drastically: as the pump spot width is increased
(keeping P̄ constant), the radius of the dark ring increases,
and existing out of the bistable regime, reaches the circum-
ference at which the ring becomes unstable to the “snake
instability,” the well-known phenomenon in which azimu-
thal modes of the annular defect shatter the dark soliton into

FIG. 2. Panels (a)–(d): Density of breathing ring soliton at
several times, excited by a phase imprinted perturbation in the
uniform condensate, forced homogenously with nonresonant and
second-order resonant pumping. Bottom: Overlap between the
evolving wave function of the condensate and that at the time
fixed at (a), showing the periodicity of the complex wave
function. P ¼ P̄ ¼ 5.
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an integer number of chiral defects [34,35]. This instability
thus naturally quantizes the number of vortex-antivortex
pairs produced as a function of the ring radius. This
quantization is demonstrated in Fig. 3, which shows the
dependence of the emergent polygonal symmetry as a
function of the Gaussian half width at half maximum
(half-width) in units of healing lengths, as determined
from numerical experiments. The half-width is defined
as wh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð2Þ=αp

.
Once the rotational symmetry breaks after a finite

number of oscillation cycles, the symmetry remains broken,
and a new dynamically stable structure is formed which,
though evolving dynamically, is at every time symmetric
under transformations of the dihedral group Dm (the group
of symmetry transformations of the polygon of degree m).
Figure 4 shows density profiles of two polygonal breathers
at several times during their evolutions. The bottom panel
of that figure shows the inner product jhψ0jψ tij ¼
ð1=AÞj R ψ�ðr; 0Þψðr; tÞdrj (where A is chosen such that
jhψ0jψ0ij ¼ 1) of the m ¼ 4 (square-symmetric) breather,
where we arbitrarily set ψ0 to the wave function at the time
shown in (a). The wave function indeed forms a closed
periodic cycle once the symmetry has broken, despite the
rotational symmetry of the physical system. The periodicity
of the breather is almost exactly equal to twice the predicted
periodicity of the density oscillations studied in 0D. This
period doubling comes from the broken rotational sym-
metry of the structure: jψðtÞi ¼ Rðπ=mÞjψðtþ π=μÞi,
where the operator RðϕÞ rotates the breather by ϕ radians
about its center, so that jψðtÞi ¼ jψðtþ 2π=μÞi.
Orientation glass.—While these spontaneously polygon-

symmetric excitations are translationally fixed by the

location of a Gaussian resonant pump, they do posses a
rotational degree of freedom. The polygonal structures
radiate density oscillations possessing the polygonal sym-
metry of their source indicating the emergence of orienta-
tional order in a lattice of polygonal breathers. Figure 5
shows the direct numerical simulation of a condensate
forced by uniform nonresonant pumping and by a square
lattice of Gaussian pumps with inverse width parameter α.

FIG. 3. Panels (a)–(e): From direct numerical integration of
Eqs. (1) and (2), density profiles exhibitingm ∈ f2;…; 6g spatial
symmetry, adopted spontaneously for fixed homogenous non-
resonant pump (P ¼ 2) and second-order resonant pumping with
Gaussian profile P̄ exp½−αr2� at fixed strength (P̄ ¼ 15) and
varying half-width parameter α. Bottom: Corresponding depend-
ence of spontaneously adopted symmetry order m on the
Gaussian half-width in units of the healing length.

FIG. 4. From direct numerical integration of Eqs. (1) and (2),
density profiles over the evolution of two breathing structures
exhibiting different degrees of quantized spatial symmetry break-
ing, under uniform nonresonant pumping P ¼ 2 and a Gaussian
n ¼ 2 resonant pump of the form P̄ exp½−αr2�, with P̄ ¼ 10. (a)–
(e) show the dynamics of the breather formed when α ¼ 0.05,
which spontaneously adopts degree-4 polygonal symmetry, and
then evolves in a closed cycle: the bottom panel shows the inner
product of the condensate wave function over time with that
shown in (a), showing that the wave function perfectly repeats
periodically. (f),(j) show the evolution of a degree-5 symmetric
breather, formed spontaneously when α ¼ 0.03.

FIG. 5. Condensate densities under uniform nonresonant
pumping, simultaneously pumped by a square lattice of resonant
pumps with Gaussian profile P̄ exp½−αr2�. Orientations of central
lattice site excitations highlighted in white. (a) Spontaneous
orientational order emerges when α is chosen such that the lattice
site excitations match the symmetry of the lattice. (b) A glassy
ordering emerges instead when α is chosen such that the
symmetry of the lattice site excitations is incommensurate with
that of the lattice. P ¼ 1.5 and P̄ ¼ 10. α ¼ 0.1 in (a) and α ¼
0.075 in (b).
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When α is chosen such that the lattice sites exhibit square-
symmetric excitations, the symmetries of the excitations
and the lattice are commensurate and spontaneously align
(a). When α is instead chosen such that the lattice sites
exhibit pentagonal symmetry, the symmetries of the lattice
and the lattice sites are incommensurate, causing geometric
frustration resulting in a glassy state. These are the analogs
of the ferromagnetic and spin glass states, but where the
spin degree of freedom (parameterized by Zn for discrete
spins) is replaced by the polygonal orientation degree of
freedom (parametrized by Dm).
In conclusion, we have introduced a generic mechanism

of breather formation in nonequilibrium condensates that
leads to highly nontrivial dynamical behavior, including the
spontaneous adoption of unusual spatial symmetries and
emergent order.
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