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Single-mode operation is a desirable but elusive property for lasers operating at high pump powers.
Typically, single-mode lasing is attainable close to threshold, but increasing the pump power gives rise to
multiple lasing peaks due to inter-modal gain competition. We propose a laser with the opposite behavior:
multimode lasing occurs at low output powers, but pumping beyond a certain value produces a single lasing
mode, with all other candidate modes experiencing negative effective gain. This phenomenon arises in a
lattice of coupled optical resonators with non-fine-tuned asymmetric couplings, and is caused by an
interaction between nonlinear gain saturation and the non-Hermitian skin effect. The single-mode lasing is
observed in both frequency domain and time domain simulations. It is robust against on-site disorder, and
scales up to large lattice sizes. This finding might be useful for implementing high-power laser arrays.
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Several unconventional laser systems have been
invented, in the past few years, based on coupled-cavity
configurations that achieve unusual effects not found in
single-cavity designs. These have drawn inspiration from a
variety of other fields, such as non-Hermitian physics and
condensed matter physics, and they include parity-time
(PT ) symmetric lasers [1–3], lasers tuned by exceptional
points [4–6], topological lasers [7–10], and, recently, lasers
based on imaginary synthetic gauge fields [11–13]. A
common objective of these efforts is to find lasers that
sustain single-mode operation at high powers. In conven-
tional optical cavities, single-mode lasing occurs close to
the lasing threshold, but increasing the pump causes more
and more modes to acquire positive net gain. The resulting
multimode lasing is detrimental for applications requiring
output beams that are spatially and temporally stable.
Strategies for maintaining single-mode operation have
included built-in optical feedback [14], free spectral range
enlargement via sub-wavelength confinement [15], spatial
structuring of the pump to match a specific mode [7,16],
and using topological edge modes to suppress mode
localization [8,9].
Some of the most interesting approaches to single-mode

lasing have exploited the special features of non-Hermitian
dynamics [3,6,10,17–19]. Lasers are inherently non-
Hermitian due to the presence of gain (pumping) and loss
(outcoupling and dissipation), and some non-Hermitian
systems can exhibit phenomena going far beyond simple
mode amplification or damping. For instance, PT sym-
metry breaking involves two modes of a non-Hermitian

system coalescing and taking on identical frequencies and
different gains or losses [19]; coupled-cavity lasers can use
this to suppress half the modes that might lase [1–3], and
for other forms of gain management [17]. Other exotic
aspects of non-Hermitian wave dynamics occur in periodic
lattices [20–28], like the “non-Hermitian skin effect”
(NHSE), whereby the bulk modes of a non-Hermitian
lattice collapse into boundary modes [29–43]. Longhi [11]
has proposed a laser array based on a Su-Schrieffer-Heeger
(SSH) lattice with asymmetric couplings that induce the
NHSE. By fine-tuning the couplings, the lattice can be
made to host a single extended mode evolving from an
SSH end mode. This is made to lase via a PT symmetric
pumping configuration, while all other modes are skin
modes that receive little effective gain due to their spatial
localization [11–13].
Most of these coupled-cavity laser designs have been

based on linear lattice features applicable at or below the
lasing threshold. Above threshold, and especially at high
powers, nonlinear effects become important but are usually
detrimental to the intended functionality of a laser. For
instance, spatial hole burning, or the saturation of gain in
regions where the field is most intense, tends to induce
multimode lasing, since modes with profiles different from
the lasing mode(s) acquire relatively higher gain [44–46]; it
can also spoil useful symmetries such as PT symmetry.
One may ask whether nonlinearity could instead have a
beneficial effect, say by interacting with the non-Hermitian
properties to produce qualitatively new and useful behav-
iors in the above-threshold regime.
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Here, we show that a coupled-cavity laser with non-fine-
tuned asymmetric couplings can exhibit a behavior we call
“spontaneous single extended mode” (SSEM) lasing,
whereby increasing the pump above a certain level switches
the laser from a multimode regime to a high-power single-
mode regime. Under SSEM lasing, as the pump strength is
raised to arbitrarily large values, the other modes experi-
ence decreasing effective gain, and recede further from
threshold. Although the mode suppression originates in
NHSE-induced spatial localization, the SSEM in our model
emerges spontaneously in the nonlinear, gain saturated
regime. The lattice sites are pumped uniformly, rather than
spatially structuring the pump to select a specific mode
[1,2,11]. Moreover, the asymmetric couplings in the lattice
need not be fine-tuned to produce an extended mode [11].
The model can be realized in various ways, such as using a
coupled resonator lattice with differential gain or loss on
inter-site couplers [8,11,22,23,47–51]. SSEM lasing could
be used to implement laser arrays that lase in a single high-
power mode, far above threshold.
We consider the tight-binding model of Fig. 1(a),

consisting of sites on a square lattice with one site per
unit cell and asymmetric couplings t1 � δt between nearest
neighbors (orange and blue arrows). This is a two-
dimensional (2D) generalization of the Hatano-Nelson
model [29]. The Hamiltonian is H ¼ H0 þH1, where

H0 ¼
X

mn

½ðt1 − δtÞða†mnamþ1;n þ a†mnam;nþ1Þ

þ ðt1 þ δtÞða†mnam−1;n þ a†mnam;n−1Þ� ð1Þ

is linear, non-Hermitian, and nonreciprocal; amn denotes
the annihilation operator on row m and column n; and

H1 ¼ i
X

mn

�
Γ

1þ jψmnj2
− γ0

�
a†mnamn ð2Þ

describes on-site nonlinear gain and linear loss [8,52].
The parameter Γ is the pump strength, jψmnj2 is the local
intensity, and γ0 is an on-site loss representing outcoupling
and material absorption. The pump and loss are spatially
uniform, but the gain may be nonuniform due to jψmnj2
(i.e., gain saturation). This tight-binding model can be
realized with a lattice of coupled ring resonators [8,47–49],
as shown in Fig. 1(b); each site is a ring resonator
containing a laser medium, and the asymmetric couplings
are implemented by placing unsaturated gain and loss on
the arms of the coupling rings between neighboring sites
[11,22,23,50,51]. Since such coupled-ring models are
typically describable by tight-binding models [53,54],
we will focus on the latter.
We perform time domain simulations of the nonlinear

Schrödinger equation i∂tjψi ¼ Hjψi, which has been
widely applied in the investigation of laser dynamics
[8,52,55–58] (see Supplemental Material [59]). The wave

function jψi ¼ ½ψ11;ψ12;…;ψmn;…�T describes the
amplitude and phase of the resonator mode [8,56,61] at
site ðm; nÞ, wherem; n ∈ ½1; 2;…L� and L is the number of
sites on each side of square lattice. Figure 1(c) shows the
resulting plot of output intensity Iout versus pump strength
Γ, where Iout ¼

P
mn jψmnj2 (we assume equal outcoupling

from each site, with normalized power units). The model
parameters are given in the figure caption; note that the
dynamic range of Γ is compatible with existing semi-
conductor lasers [2,7,9,62]. A lasing threshold occurs at
Γth ¼ 0.2, above which the output power increases mono-
tonically with Γ. The output spectrum, plotted in Fig. 1(d),
contains multiple lasing peaks for weak pumping
(Γ ¼ 0.24), and a single peak under strong pumping
(Γ ¼ 0.7). To verify the large-Γ behavior, we perform a
frequency domain calculation, using a nonlinear solver to
find a self-consistent single-mode solution to the nonlinear
time-independent Schrödinger equation (see Supplemental

FIG. 1. (a) Schematic of a 2D square lattice exhibiting SSEM
lasing. The sites (red circles) have uniformly pumped saturable
gain and linear loss, with asymmetric nearest neighbor couplings
t1 � δt (orange and blue arrows). (b) Schematic of a possible
realization based on a lattice of coupled ring resonators, with gain
(pink) and loss (gray) on the coupling rings. One circulation
direction is assumed, indicated by the arrows. (c) Output
intensity Iout versus pump strength Γ for a 6 × 6 lattice with
t1 ¼ 0.1, δt ¼ 0.04, and background loss γ0 ¼ 0.2. Blue circles
show time domain results, with initial conditions ψmnðt ¼ 0Þ ¼
ðαmn þ iβmnÞf0, where ðm; nÞ is the site index, αmn; βmn are
drawn independently from the standard normal distribution, and
f0 ¼ 0.01 is a scale factor; Iout is obtained by averaging over an
interval t ∈ ½20000; 50000�. The orange line shows the results of
a self-consistent single-mode frequency domain calculation in the
large-Γ regime. The threshold Γth ¼ 0.2 is indicated, while blue
and red arrows mark the Γ values used in the next subplot.
(d) Output spectrum for Γ ¼ 0.24 (blue dashes) and Γ ¼ 0.7 (red
line), using the same lattice parameters as in (c).
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Material [59]). This reproduces the Iout versus Γ curve, as
shown by the orange line in Fig. 1(c).
To help understand this phenomenon, we focus on two

relevant features of the lattice. First, in the linear regime and
for 0 < δt < t1, the 2D Hatano-Nelson model exhibits the
NHSE [13,63], with skin modes localized to the upper-right
corner of the lattice [Fig. 1(a)]. Second, it can be shown that
fH; CT g ¼ 0 for C ¼ IM ⊗ σz, where IM is an identity
matrix with rank M ¼ L2=2, σz is the third Pauli matrix,
and T is the time reversal (complex conjugation) operation
[52]. The CT symmetry holds even in the nonlinear regime,
provided the couplings are real and the diagonal terms of
H—into which the saturable gain enters—are imaginary
(see Supplemental Material [59]). Each eigenstate of H is
thus either CT symmetric with a purely imaginary eigen-
value, or CT -broken with the partner eigenvalues related
by E1 ¼ −E�

2 [52].
Figure 2(a) shows the evolution of the modal gain Im½E�

with pump strength Γ for the various lattice eigenmodes.
Below threshold, all modes have the same Im½E�. As Γ
increases, Im½E� increases linearly and reaches zero at the
threshold Γth. The uniform pumping thus causes all modes
to reach threshold simultaneously, unlike previous struc-
tured pumping schemes that selected, say, a PT -broken
mode [2] or a topological mode [8,11]. Above threshold,
we calculate the modal gains [unfilled circles in Fig. 2(a)]
from the effective nonlinear Hamiltonian H found by
inserting the time-averaged intensities into Eq. (2). In
the multimode regime, this replacement of the instanta-
neous intensity with a time average is an approximation,
and results in the artifact that ImðEÞ > 0 for some eigenm-
odes. For larger Γ, however, the simulations settle into a
time-independent intensity distribution, corresponding to a
single lasing mode. In this regime, one mode is found to
have Im½E� ¼ 0, as expected, while all the others have
Im½E� < 0 and decreasing with Γ. In other words, the
SSEM is an increasingly stable lasing mode as the pumping
strength increases. This behavior is corroborated by self-
consistent frequency domain calculations, which yield
modal gains exactly matching the time domain results in
the SSEM lasing regime, as shown by the orange lines
in Fig. 2(a).
By tracking the eigenmodes of the nonlinear

Hamiltonians, we find that the SSEM originates from a
pair of eigenmodes of the linear system, at opposite edges
of the band. These eigenmodes are CT -broken partners and
are poorly localized, as shown by the plot of the inverse
participation ratio (IPR) in Fig. 2(b). [The IPR, defined asP

mn jψmnj4=ð
P

mn jψmnj2Þ2, is a standard measure of
localization [64] ]. As Γ increases within the multimode
regime, the two CT -broken eigenmodes migrate across
the band, eventually meeting at the center of the band and
undergoing a CT transition, as shown in Fig. 2(c). The
evolution of the mode intensity distribution during this
process is shown in Fig. 2(d). After the transition, one of the

CT symmetric modes becomes the SSEM, with the
eigenvalue pinned to E ¼ 0, while its partner has
ImðEÞ < 0. The SSEM has a lower IPR, or a larger mode
area, than the remaining eigenmodes of the nonlinear
Hamiltonian; in the Supplemental Material, we show that
its IPR scales inversely with the number of lattice sites,
implying that it is a true extended mode [59]. (Note that the
presence of extended modes does not contradict the NHSE,
which states that an extensive number of eigenmodes, but
not necessarily all of them, become skin modes.) All the
other modes are more strongly localized, and with increas-
ing Γ have decreasing ImðEÞ as the SSEM saturates the
gain throughout the lattice.
Figure 2(e) shows the phase diagram of the laser, derived

from time domain simulations and plotted against the
coupling asymmetry δt and the pump strength Γ. For small
δt, we only observe multimode lasing since the NHSE is

FIG. 2. (a) Effective gain Im½E� versus pump strength Γ for the
various lattice eigenmodes. Hollow circles are from the eigene-
nergies of the nonlinear Hamiltonians obtained via time domain
simulations, using time-averaged intensities to calculate gain
saturation. Orange lines are frequency domain results obtained in
the single-mode and below-threshold regimes. (b) IPR, a measure
of localization, for the eigenmodes at the lasing threshold Γth. The
arrows indicate two modes at opposite band edges, which are
related by CT . (c) ReðEÞ versus Γ for the two modes indicated
in (b). With increasing Γ, they undergo a CT transition, and one
of the resulting modes is the SSEM. (d) Intensity distributions of
the modes shown in (c) at different Γ. The modes in each CT pair
have the same intensities, so only one is plotted. Like the original
band edge modes, the SSEM is delocalized, even for large Γ.
(e) Phase diagram for the laser, indicating the below-threshold,
multimode, and single-mode regimes, determined by time do-
main simulations for different values of the coupling asymmetry
δt and pump strength Γ. The single-mode regime is divided into
SSEM lasing and CT -broken lasing, as described in the text. All
other lattice parameters are the same as in Fig. 1.
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weak. This is exemplified by the strongly multimodal
spectrum plotted in Fig. 3(a), obtained with δt ¼ 0 (i.e.,
symmetric couplings) for which the NHSE is absent. For
larger δt, single-mode lasing always sets in at high pump
strengths. The threshold for the SSEM regime decreases
with δt, and approaches the lasing threshold as δt → t1.
There is also an intermediate regime, indicated in green in
the phase diagram, which we call “CT -broken lasing.” This
occurs when the two aforementioned CT -broken modes
have real frequencies �E0 but have not yet reached their
CT transition, while all other modes have ImðEÞ < 0. Since
the two modes have identical spatial intensity profiles, they
compete strongly with each other, resulting in lasing at
either þE0 or −E0 (chosen spontaneously based on the
initial conditions). This persists over a relatively small

range of Γ; with stronger pumping, the CT transition
occurs, and the SSEM emerges as the sole lasing mode
at E ¼ 0.
The results presented above were obtained with 6 × 6

lattices, but SSEM lasing is also found to occur in larger
lattices, as well as in one-dimensional (1D) lattices (see
Supplemental Material [59]). Figure 3(b) plots the gain
difference Δγ ¼ ImðE0Þ − ImðE1Þ versus Γ in the SSEM
lasing regime, where E0 ¼ 0 is the energy of the lasing
mode and E1 is the energy of the mode with the next-
highest gain, for 2D lattices of size L × L. The increase of
Δγ with Γ (i.e., the other modes receding further from
threshold) is consistent with the 6 × 6 results shown in
Fig. 2(a). Moreover, for each Γ we find that Δγ increases
with L. This indicates that the SSEM lasing phenomenon
can scale to large lattices to achieve high-power lasing. In
the Supplemental Material, we show that SSEM lasing can
also be observed in a 1D lattice (the Hatano-Nelson model
[29] with additional on-site nonlinear gain and linear loss).
The main difference is that 1D lattices have larger mode
spacings, so the occurrence of single-mode lasing may not
be as striking as in 2D [59].
The gain difference between lasing and nonlasing

modes, which increases with pump strength and system
size, provides a measure of robustness against disorder. In
Fig. 3(c), we plot the output spectra for 6 × 6 lattices with
additional real on-site mass terms f δmn, where f is a scale
factor and δmn is drawn independently from the standard
normal distribution for each site. This mimics random
frequency detunings induced by fabrication defects or other
sources of disorder. At fixed pump strength Γ, the system
exhibits single-mode lasing over a range of f > 0, though
the lasing mode is no longer pinned to zero since the CT
symmetry is spoiled by the real on-site terms [59].
Multimode lasing sets in if the disorder is sufficiently
strong (in this case, f ≳ 0.06; this should scale with Δγ).
Another reason for the robustness may be that disorder-
induced mode localization is counteracted by the
asymmetric couplings, as suggested by previous studies
[22,27,29]. Although the present behavior may be remi-
niscent of laser mode stabilization induced by linear PT
symmetry [1–3] or CT symmetry [52,65], the underlying
mechanism is different, since SSEM lasing arises in the
nonlinear gain saturated regime and its stability improves
with system size.
In summary, we predict that an unusual form of single-

mode lasing arises in lattices with asymmetric couplings:
the laser can be multimode for weak pumping, but single-
mode at high output powers. Strikingly, the stability of the
single lasing mode increases with both pump strength and
lattice size. The possibility of exotic phenomena emerging
from the interplay of non-Hermiticity and nonlinearity has
been explored in previous works; for instance, coupled
cavities operating near an exceptional point have been
shown to exhibit an inverted power curve, with stronger
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FIG. 3. (a) Output spectrum for δt ¼ 0, obtained from a time
domain simulation with lattice size 6 × 6, Γ ¼ 1, and all other
parameters the same as in Fig. 1. Since the couplings are
symmetric, the NHSE is absent. Multimode lasing is observed
for all values of pump strength Γ > Γth we tested. (b) Gain
difference Δγ between the single lasing mode and the next-
highest-gain mode, plotted against pump strength Γ in the SSEM
lasing regime for lattices of varying size L × L. LargerΔγ implies
that the laser is further from the multimode regime. Evidently, Δγ
increases with both Γ and L, and its increase with Γ, for fixed L, is
also consistent with Fig. 2(a). (c) Effects of on-site disorder. Left
panel: output spectra, plotted with different vertical offsets, in
lattices with real on-site detunings f δmn, where f is a scale factor
and δmn is drawn independently from the standard normal
distribution for each site. The lattice is pumped at Γ ¼ 1, with
all other parameters the same as in Fig. 1. The results are shown
for several values of f, using the same δmn distribution for each
case. For sufficiently weak disorder, single-mode lasing is
observed, though the lasing mode is not pinned to zero. For
strong disorder, multimode lasing occurs. Right panel: the
random disorder profile δmn used to generate these results.
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pumping lowering the output power [4,5]. There have been
proposals to use the NHSE for single-mode lasing [11–13],
but our system is different as the special lasing mode
emerges in the gain saturated regime and is not spatially
selected by the pump (our lattice is pumped uniformly).
Other intriguing consequences of combining the NHSE
with Kerr nonlinearity, rather than gain saturation, have
also recently been studied [63,66,67]. To realize our model,
a promising approach may be to use an array of coupled
ring resonators with differential gain and/or loss on the
coupling rings to induce asymmetric couplings between
site rings [54,59], fabricated on a gain medium with a large
dynamic range [62,68].
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