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We proposed a photonic approach to a lasing mode supported by low-loss oscillation of polarized bound
electrons in an active nano-slit-waveguide cavity, which circumvents the confinement-loss trade-off of
nanoplasmonics, and offers an optical confinement down to sub-1-nm level with a peak-to-background
ratio of ∼30 dB. Experimentally, the extremely confined lasing field is realized as the dominant peak of a
TE0-like lasing mode around 720-nm wavelength, in 1-nm-level width slit-waveguide cavities in coupled
CdSe nanowire pairs. The measured lasing characteristics agree well with the theoretical calculations. Our
results may pave a way towards new regions for nanolasers and light-matter interaction.
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Laser with tighter field confinement is a key to lower-
dimensional light-matter interaction for applications rang-
ing from optical microscopy, sensing, photolithography, to
information technology [1–3]. Generally, limited by optical
diffraction, a photonic lasing cavity is unable to confine
fields much better than half the vacuum wavelength (λ0=2)
[2,4]. The emerging plasmonic nanocavity opens a route
towards deep-sub-diffraction lasing field with optical con-
finement down to λ0=30 [5–11]. However, due to the trade-
off between optical confinement and plasmon loss of
oscillating free electrons that is intrinsically originated
from Landau damping in metals [12], scaling down the
cavity size of a plasmon nanolaser is a great challenge due
to the insufficient gain and thermal damage [4,10,13].
On the other hand, complying with the electromagnetic

boundary conditions [14], tight field confinement (e.g.,
down to 10-nm level) has recently been demonstrated in
photonic interfaces such as slot waveguides [15,16] and
bowtie-shaped dielectric structures [17–20], indicating a
possibility to surpass the field confinement of plasmonic
nanostructures if the interface size can be further scaled
down.
Here we propose a purely photonic approach to circum-

vent the confinement-loss trade-off and offer an extreme
field confinement (∼λ0=1000). Based on a photonic nano-
cavity formed in a high-gain slit waveguide in a coupled
nanowire pair (CNP), our calculations show that a low-
threshold TE0-like lasing mode in a 1-nm-slit CdSe CNP
can offer a field confinement down to 0.29 nm and a peak-
to-background ratio of about 30 dB, with much higher
cavity-to-free-space emission efficiency. Experimentally,
pumped by 532-nm-wavelength laser pulses, the TE0-like
lasing mode around 720-nm wavelength is observed in

CdSe CNPs, with lasing characteristics agreeing well with
theoretical calculations.
The configuration of the nanolaser is schematically

illustrated in Fig. 1(a). The CNP, supported on a low-
refractive-index substrate (e.g., a MgF2 crystal with index
of 1.38), is formed by a pair of identical high-gain semi-
conductor nanowires typically having a hexagonal cross
section, a smooth surface (section I in Supplemental
Material [21]) and a uniform diameter (defined as the
diagonal of its hexagonal cross section). Relying on the
coupled oscillation of polarized bound electrons around its
both sides (section II in Supplemental Material [21]), the
slit can support a hybrid TE0-like waveguiding mode with a
central hotspot in the cross section of the CNP [Fig. 1(b),
see section III in the Supplemental Material [21] ]. For
quantitative calculation, we assume the nanowire material
to be CdSe (refractive index n of 2.6 at 720-nm wavelength
[36]), and calculate the modal profile of the TE0-like mode
using a finite element method with a linear transition of
index (Fig. S2 in the Supplemental Material [21]). Since the
optical response of the nanowire we investigated here is
dominated by bound electrons, classical electromagnetic
theory remains valid for simulating its photonic response
with feature size well below 1 nm [37]. When the slit width
is small enough (e.g., 1-nm scale), the TE0-like mode at
720-nm wavelength (typical lasing wavelength of CdSe
nanowires [38–40]) can offer a central peak at the hotspot
with ultratight field confinement and large peak-to-
background ratio (e.g., ∼30 dB, with definition given in
section IV in the Supplemental Material [21]). Figures 1(c)
and 1(d) give the calculated field confinement, defined
as the full width at half maximum (FWHM) of the
field intensity of the TE0-like mode (the fundamental
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waveguiding mode); the 0.29 (x axis) and 2.83-nm (y axis)
spatial confinement offer a spot size down to∼6.2 × 10−6λ20
[Fig. 1(e), see also Fig. S8(a)].
Apart from the central peak, the TE0-like mode has a

low-intensity background field that is largely flat inside the
CdSe nanowire and faded out quickly beyond the nano-
wire’s farmost edges [dotted line in Fig. 1(c)]. Unlike a
plasmonic mode that is wholly subdiffraction confined,
here the TE0-like mode as a whole is diffraction limited.
However, the subnanometer-level low-loss optical field
confinement is far beyond the reach of a plasmonic mode
(see section V in the Supplemental Material [21]). A certain
background field is critical to bestow the central peak with
high intensity and slow decay outside the end face while
maintaining an extreme optical confinement. Also, when
interfacing with free-space photons, the momentum mis-
match of this photonic mode is much smaller than that of an
ultraconfined plasmonic mode.
Meanwhile, within a ∼0.0043% of the total mode area,

the ultraconfined central peak concentrates ∼0.11% of
the total mode power (section VI in the Supplemental

Material [21]). Calculated fraction of the mode power
contained inside the CdSe nanowire is ∼37.1%, contrib-
uting to a confinement factor Γg of ∼0.52 for the CNP
(section VII in the Supplemental Material [21]), which is
favorable for reducing the lasing threshold [41].
To explore the lasing modes in the CNP, we first

calculate its guiding modes at 720-nm wavelength with
a slit width w of 1 nm. When the nanowire diameter d is
less than 225 nm, the CNP supports only TE0- and TM0-
like modes [Fig. 2(a) and section VIII in the Supplemental
Material [21] ]. The TE0-like mode is nearly horizontally
polarized [Fig. 2(b)], while the TM0-like mode is basically
vertically polarized [Fig. 2(c)].
In a Fabry-Perot-type CNP cavity, the lasing threshold

gain gth provided by the nanowire can be obtained as
gthL ¼ 1=Γg lnð1=RÞ [42], where L is the nanowire length
and R the single-trip reflectivity (see section VII in the
Supplemental Material [21]). Calculated gthL [Figs. 2(d)
and 2(e)] shows that, lasing thresholds of both modes
increase monotonically with decreasing d and increasing
slit width w, which is reasonable as smaller d offers lower
effective gain (less gain material) and higher round-trip loss
(lower end face reflectivity), and increasing w decreases Γg.
In particular, compared with the TM0-like mode, the
TE0-like mode has a lower threshold with d < 209 nm
when w ¼ 1 nm [Fig. 2(d)], or at least w < 6 nm when

FIG. 1. CNP for extreme optical field confinement at 720-nm
wavelength. (a) Schematic illustration of a CNP-based nanolaser.
(b) Calculated cross-sectional electric field intensity of a TE0-like
mode in a CNP with nanowire diameter d ¼ 170 nm and slit
width w ¼ 1 nm. (c),(d) Field intensity distribution along the
horizontal (x axis) direction (y ¼ 0) and the vertical (y axis)
direction (x ¼ 0) in (b), respectively. Inset: close-up of the field
intensity around the slit in (b). For better clarity, a 100× profile is
also plotted as dotted lines in (c). (e) Close-up view of the
intensity profiles in (c) and (d).

FIG. 2. Laser modeling of a CdSe CNP cavity at 720-nm
wavelength. (a) The first 4 modes (TE0-, TM0-, TE1-, and TM1-
like modes) supported in a CNP with w ¼ 1 nm, and their
calculated effective refractive indices neff . (b),(c) Electric field
vectors of the TE0- and TM0-like modes with d ¼ 170 and
w ¼ 1 nm. The orientation and size of the white arrow indicate
the polarization and amplitude of the local field. (d),(e) Threshold
gain gthL of the first 4 modes with (d) w ¼ 1 and (e) d ¼ 170 nm,
respectively.
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d ¼ 170 nm [Fig. 2(e)]. In addition, the calculated quality
factor (Q factor) of the TE0-like mode of a CNP with
20-μm length and 170-nm nanowire diameter is ∼60.
Compared with Q factors reported in other semiconductor
nanowires with larger diameters [39], this Q factor is
relatively lower due to the lower end face reflectivity of
a thinner nanowire, which could be enhanced by forming
Bragg gratings at one side of the CNP.
Figure 3(a) shows the calculated near-field intensity

evolution of the cavity mode emitting into free space.
As it escapes out of the CNP end face, the field of
the central peak spreads out with decreasing intensity
[Fig. 3(b)], a similar behavior as light transmission through
a deep-subwavelength aperture [43,44], and can be inter-
preted as an inevitable result of the Heisenberg uncertainty
relation (section IX in the Supplemental Material [21]).
However, since the majority of the mode power is

distributed in the diffraction-limited background field,
the effective index of the TE0-like mode (e.g., 1.46 with
d ¼ 170 nm) is not very large compared with that of light
in free space [Fig. 2(a)], leading to an overall trans-
missivity, i.e., the ratio of overall transmitted power to

the mode power inside the cavity, as high as 0.95
[Fig. 3(c)], much higher than that of a deep-subwavelength
aperture with similar lateral field confinement [e.g.,
4.10 × 10−16 for a 1-nm-diameter aperture, see Fig. 3(d)].
It is worth mentioning that a plasmonic background field
was proved effective for momentum compensation with
aperture size down to ∼150 nm [45]. However, for a 1-nm
aperture, the momentum mismatch is too large to be
compensable in this way. Moreover, the relatively slow
intensity decay of the output field outside the end face is
particularly desirable for near-field light-matter interaction
for nanoscale objects (Fig. S12 in the Supplemental
Material [21]).
To experimentally realize such a nanolaser, we construct

the CNP using single-crystal wurtzite CdSe nanowires
synthesized via a physical vapor deposition method [46].
These nanowires typically have an atomic-level sidewall
smoothness for low-loss waveguiding [47] and a gain high
enough (e.g.,> 0.1 μm−1 around 700-nm wavelength [48])
for supporting lasing oscillation in a short (e.g., 10-μm
level) cavity [40]. Although our calculation has shown that
a CNP supports only a TE0-like mode when 154 nm <
d < 169 nm [Fig. 2(a)], experimentally nanowires with
such small diameters have large substrate-induced leakage
losses and lower effective gain, and thus higher lasing
threshold [7,49], which requires a high pump density that is
very likely to damage the CNP. Therefore, to facilitate the
experimental realization, we prefer to use nanowires with
larger diameters (i.e., 154 nm < d < 209 nm, see Fig. 2(d)],
with which the TE0-like mode has a much lower threshold
gain, and TE0- and TM0-like modes can be readily identified
by their orthogonal polarizations.
As shown in Fig. 4(a), we assemble a CNP using two

identical nanowires (cut from the same CdSe nanowire with
d ¼ 166 nm) in close contact in parallel via micromani-
pulation, and mill both ends of the CNP via focused ion
beam to form a CNP with L ¼ 22.4 μm [Fig. 4(a), see also
section X in the Supplemental Material [21] ].
After milling, the CNPs typically have flat end faces

[Fig. 4(b), see also section XI in the Supplemental Material
[21] ]. With a surface roughness of ∼1 nm, the slit width
between the two opposite nanowire vertex edges is about
1 nm [Fig. 4(c), see also Fig. S15] with a V-shaped linearly
changing index profile [inset of Fig. 4(c), see also section I
in the Supplemental Material [21] ]. To pump the CNP, we
loosely focus a beam of 532-nm-wavelength laser pulses
(5-ns pulse width and 2-kHz repetition rate) onto the whole
length of the CNP using an objective of relatively low
numerical aperture (NA), and collect emission from the
CNP end face via a high-NA objective [Fig. 4(d), see also
section XII in the Supplemental Material [21] ]. Under a
low pump density, the output end face of the CNP is a dim
red-color spot in optical micrograph [Fig. 4(e)]. When the
pump density exceeds a certain threshold, the end face
output abruptly goes brighter with clear interference fringes

FIG. 3. Calculated near-field intensity evolution of optical field
output from a TE0-like mode in a CNP (d ¼ 170 nm, w ¼ 1 nm)
and a circular aperture (1-nm diameter). (a) Evolution of jEj2 of
the TE0-like mode output from a CNP end face. A series of
isophases of Ex are plotted for better visualization. (b) Evolution
of jEj2ð0; zÞ of the field output from a TE0-like mode (blue) and a
1-nm aperture (orange), respectively. (c),(d) jEj2 of an optical
field with a wave vector of k0 output from (c) a CNP end face and
(d) a 1-nm aperture. The calculated overall transmissivity T is
also presented. For better visualization, the intensity in (d) is
amplified by a factor of 1013. The input field is 720 nm in
wavelength and 1 nW in power.
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[Figs. 4(f) and 4(g)], confirming the higher intensity and
better coherence of the emission above the lasing threshold.
Figure 5(a) shows the photoluminescence (PL) spectra

collected from the end face of a typical CNP (d ¼ 158 nm).
When the pump density increases to 1.4 MW=cm2, an
evident peak at 709.2 nm emerges. Since the measured
polarization of the peak is horizontal [inset of Fig. 5(a)]
and d is smaller than the cutoff diameter of TE1-like modes,
the lasing mode is thus a TE0-like mode, which is also
predicted in Fig. 2(d). Figure 5(b) shows the pump-density-
dependent output intensity and linewidth of the PL peak.
The typical S curve of peak intensity under log-log scale
shows the evolution from spontaneous emission to ampli-
fied spontaneous emission, and finally lasing oscillation at
lasing threshold of 1.4 MW=cm2, accompanying with
evident linewidth narrowing from ∼3 to 0.5 nm (measured

with a resolution of 0.035 nm). Figure 5(b) also gives the
measured degree of second-order coherence gð2Þð0Þ. When
the pump density is increased from well below to approach
the lasing threshold (1.4 MW=cm2), gð2Þð0Þ increases from
∼1 (due to the averaging effect of detector [50]) to ∼1.31,
clearly showing the thermal bunching of the photons. When
the pump density is further increased to exceed the thresh-
old, gð2Þð0Þ decreases to ∼1, agreeing well with those
observed in typical nanolasers [50,51], which confirms the
lasing action in the CNP.
Since a direct measurement of a sub-1-nm field confine-

ment is beyond the reach of current techniques, to obtain
more evidences of the TE0-like lasing mode, we have
investigated a collection of CNP-based nanolasers with
different d, and compared experimental results with theo-
retical calculations. Figure 5(c) summarizes the peak
wavelength and polarization of the first-appeared (i.e.,
the lowest-threshold) lasing mode with respect to d (see
also section XIII in the Supplemental Material [21]). For
comparison, the calculated d-dependent polarization dis-
tribution of the lowest-threshold lasing modes is plotted as
a three-region background: region I for TE0-like modes
with horizontal polarization, region II for TM0-like modes
with vertical polarization, and region III for TE1-like modes
with horizontal polarization. It shows that, with relatively
small d, the first 4 modes (white solid triangles) are all
horizontally polarized TE0-like modes, falling well in the
predicted region I. With increasing d, the next 5 modes
(black hollow squares) are vertically polarized TM0-like
modes, largely agreeing with theoretical prediction. The
slight deviation of the first mode (d ¼ 197 nm) from region
II may result from small errors of refractive index and
measured d of the nanowire. When d exceeds the cutoff
diameter of the TE1-like modes, the last 4 modes are
horizontally polarized TE1-like modes, falling well in the
predicted region III.
Overall, we have demonstrated a CNP-based photonic

nanolaser with subnanometer-level field confinement.
Compared with existing nanolasers, this laser can offer
not only much tighter field confinement, but also much
higher output efficiency, which may open an avenue for
light-matter interaction on much lower dimensions, e.g.,
efficiently interfacing photons with single molecules or
atoms with high spatial selectivity. In addition, the ultra-
large field gradient of the central peak (see section XIV in
the Supplemental Material [21]) is promising for subnan-
ometer imaging [52], and atom or nanoparticle trapping
[53]. Moreover, without the tunneling-induced quenching
(e.g., in plasmonic nanogaps [54]), the slit width may be
further scaled down by using nanowires with lower surface
roughness to achieve tighter field confinement. With its
unparalleled field confinement, the nanolaser shown here
may inspire a new category of nanolasers and push the limit
of laser-based science and technology beyond the nano-
meter scale.

FIG. 4. Experimental realization of the CdSe CNP nanolaser.
(a) Scanning electron microscopy (SEM) image of a CdSe CNP
with d ¼ 166 nm, L ¼ 22.4 μm, and w ¼ 1 nm. (b) SEM image
of a flat end face of the CNP. (c) High-resolution transmission
electron microscope image of the 1-nm-width slit. Inset: refrac-
tive-index profile around the slit. (d) Schematic of the exper-
imental setup for lasing characterization. Multimode fiber
(MMF); beam splitter (BS); polarizer (P); notch filter (NF).
(e),(f) Optical images of the end face of CNP from CCD1
(e) below and (f) above the lasing threshold, respectively.
(g) Optical image of the CNP from CCD2 around the lasing
threshold. Dashed lines in (e)–(g) mark the edge of the substrate.
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