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We carry out a global QCD analysis of parton-to-pion fragmentation functions at next-to-next-to-leading
order (NNLO) accuracy by performing a fit to the combined set of single-inclusive electron-positron
annihilation and, for the first time, semi-inclusive deep-inelastic scattering multiplicity data. For the latter,
we utilize the approximate NNLO QCD corrections that were derived recently within the threshold
resummation formalism. We explore the impact of the NNLO corrections on the description of the semi-
inclusive deep-inelastic scattering datasets in various kinematic regimes and on the resulting pion
fragmentation functions.
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Introduction.—Fragmentation functions (FFs) constitute
a crucial building block in perturbative calculations of
scattering cross sections with detected final-state hadrons
[1]. In the presence of a sufficiently large energy scale,
QCD factorization allows one to isolate the physics
describing the transition of an outgoing parton to an
observed, colorless hadron from the hard scattering process
that produced the parton [2]. The parton-to-hadron FFs,
which precisely describe this transition are a unique
manifestation of the nonperturbative formation of QCD
final states via “hadronization,” and hence offer insights
central to our understanding of the strong interactions. The
wide range of applications of FFs includes modern studies
of the nucleon’s spin structure [3], as well as investigations
of modifications of hadron production rates in scattering
processes involving heavy nuclei [4].
FFs are process-independent quantities and thus can be

determined from data by means of a global QCD analysis
[5]. The energy scale dependence of FFs can be computed
perturbatively as an expansion in the strong coupling and is
currently known up to next-to-next-to-leading order
(NNLO) accuracy [6,7]. Given the importance of FFs,

their global analysis has enjoyed considerable theoretical
interest recently, resulting in various new sets for different
kinds of identified hadrons [8–18]. But, unlike the case of
parton distribution functions (PDFs), global analyses of
FFs have been essentially limited to the next-to-leading
order (NLO) accuracy of QCD perturbation theory. This is
due to the lack of NNLO computations for the cross
sections for some of the most relevant processes sensitive
to FFs, i.e., semi-inclusive deep-inelastic scattering (SIDIS)
and single-inclusive hadron production in proton-proton
(pp) collisions. As a result, except for heavy-flavor [19]
and transverse-momentum dependent [20] fragmentation
functions, the few NNLO extractions of FFs [13,16,17,21]
are currently based solely on single-inclusive electron-
positron annihilation (SIA) data. These studies found the
NNLO corrections to be small in the kinematic regime
where SIA data exist. Reference [22] extended the analysis
of SIA data by including all-order resummation effects at
small hadron momentum fractions, again observing very
modest effects.
The purpose of our Letter is to perform a first “proof-of-

principle” global analysis of FFs at NNLO accuracy, based
on the available SIA [23] and—for the first time in a NNLO
framework—the SIDIS data for identified charged pions of
[24,25]. Such an analysis is now possible, thanks to the
recent derivation of approximate NNLO corrections for
SIDIS in [26]. These corrections were obtained within the
threshold resummation formalism, expanding the all-order
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resummed results to NNLO accuracy in the strong cou-
pling. They are approximate in the sense that they contain
all the dominant contributions associated with the emission
of soft gluons near threshold (and even some subdominant
contributions), but do not yet constitute the full NNLO
results. Nevertheless, they should be readily suited for an
initial phenomenological NNLO analysis of SIDIS data in
terms of FFs.
Several factors motivate us to perform this study. First,

the precision of current LHC experiments and much
anticipated measurements with identified hadrons at the
future Electron-Ion Collider (EIC) [27] will make the
development of a framework for a full global analysis of
FFs at NNLO accuracy, and encompassing all available
probes, mandatory. Although this goal is still rather far off
(for example, NNLO corrections to hadron production in
pp scattering are not yet available; see, however, [28,29]
for recent progress), we believe that adding SIDIS to the
NNLO framework marks an important step in this direc-
tion, demonstrating that global NNLO analyses of FFs are
possible in principle. Second, already at this stage one can
examine the question whether the very modest NNLO
effects seen in the SIA-only analysis also recur when
adding SIDIS data to the analysis. This addresses the rather
important question of perturbative stability of the global
extraction of FFs. Finally, based on our first exploratory
analysis we will also be able to delineate the kinematic
regions where the NNLO corrections to SIDIS matter most.
This may also shed light on the question in what regions the
approximate NNLO terms derived in [26] are sufficiently
accurate, or where a full NNLO calculation for SIDIS may
be required.
Scope and setup of the analysis.—Pions are the most

copiously produced hadrons and, hence, the corresponding
datasets are the most precise ones at hand. The COMPASS
[25] and HERMES [24] SIDIS results are presented in
terms of multiplicities, i.e., normalized to the fully inclusive
deep-inelastic cross section. While all COMPASS data
were taken in scattering off deuterium, HERMES has
presented results both for proton and deuterium targets.
The two fixed-target experiments have been performed at
rather moderate center-of-mass (c.m.) system energies

ffiffiffi

s
p

.
As a consequence, they cover only limited ranges in the
photon’s virtuality Q2 and the Bjorken variable x. SIDIS is
characterized by an additional variable z, defined as the
fraction of the virtual photon’s energy carried by the
observed hadron in the target rest frame. Since the bulk
of the available SIDIS data sits at moderate Q2, we might
expect NNLO corrections to be more pronounced than for
SIAwhere most data were taken on the Z-boson resonance.
There are also plenty of SIDIS data at moderate-to-large
values of x and/or z where the threshold approximation for
the NNLO cross sections should work very well.
For consistency, we disregard the wealth of pp data with

identified pions [30] since the relevant NNLO corrections

are not yet known. In existing NLO fits, these data serve as
the main constraint for the gluon-to-pion FF which is
otherwise largely unconstrained. This implies that our
obtained set of NNLO pion FFs solely from SIA and
SIDIS probes is not meant to replace the results of existing
NLO global analyses, although it may still be useful for
calculations requiring FFs at NNLO.
In the technical analysis, we closely follow the general

framework outlined and used in previous global analyses of
FFs by the DSS group [5,10,18]. Specifically, the frag-
mentation of a parton of flavor i into a positively charged
pion is parametrized at an initial scale of Q0 ¼ 1 GeV as

Dπþ
i ðz;Q0Þ ¼ Ni

P

3
j¼1 γijz

αijð1 − zÞβij
P

3
j¼1 γijBð2þ αij; 1þ βijÞ

; ð1Þ

where Bða; bÞ is the Euler beta function and we assume as
usual Dπ−

q ¼ Dπþ
q̄ . Since the data cannot constrain all the

free parameters in Eq. (1), we adopt the same assumptions
as in [8,18]. Additionally, as the gluon FF Dπþ

g is only
weakly constrained, we stick to a simple functional form
with γg2 ¼ γg3 ¼ 0.
As in [18], our analysis implements a Monte Carlo

sampling strategy to obtain an ensemble of replicas of the
FFs which provides a faithful representation of their
underlying probability distributions and simplifies the
estimation of errors. We do not investigate the reduction
of the factorization and renormalization scale uncertainties
at NNLO accuracy and set all scales equal to the relevant
experimental value of Q throughout. The scale dependence
was studied in Ref. [26] and found to be noticeably smaller
at NNLO than at NLO for typical COMPASS kinematics
and z≳ 0.3.
The optimum values for the free parameters in Eq. (1) are

determined using a standard χ2 minimization procedure.
The scale evolution of the FFs up to NNLO and the
computation of the SIA cross sections utilizes the codes
developed in Refs. [21,31]. We note that for the NNLO fit
we also compute the inclusive DIS cross section in the
denominator of the SIDIS multiplicity at NNLO, using
the numerical implementation in [32]. We adopt the
NNPDF4.0 [33] set of PDFs along with its strong coupling
αs, and consider the quoted uncertainties in quadrature in
the value for χ2.
All numerical calculations are efficiently performed in

Mellin moment space, where also the approximate NNLO
corrections of [26] were derived. For the SIDIS cross
section this amounts to performing a double Mellin inverse
transform. To facilitate the computational burden, the
integration related to the PDF dependence of the SIDIS
cross section can be carried out once prior to the actual fit
and stored in grids [34]. A typical χ2 minimization at
NNLO accuracy is then performed in about 20 min on a
single CPU core. Clearly, our efficient Mellin technique
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will allow for a full-fledged NNLO global analysis of FFs
in the future including also pp scattering at NNLO
accuracy.
Results and discussion.—In Table I we present the results

of a series of global fits at NLO and NNLO accuracy to the
combined set of SIA and SIDIS data with gradually
increasing cuts on Q2 from its minimum value of
1.5 GeV2. We observe that for Q2 ≥ 1.5 GeV2 the descrip-
tion of the SIDIS data deteriorates by including the
approximate NNLO corrections, particularly in the case
of COMPASS. However, discarding bins with low values
of Q2 systematically leads to a better global fit at NNLO,
surpassing the quality of the NLO result in terms of the
overall χ2 already for Q2 ≥ 2 GeV2. Once we demand
Q2 ≥ 3 GeV2, the NNLO fit shows not only a much
improved total χ2 value, but also a better quality of the
description of both SIDIS datasets. Interestingly, the NNLO
fit shows significant improvements also in case of the SIA
data which all sit above the Q2 cuts we have implemented,
in contrast to what was found previously in fits based solely
on SIA data [21]. This is to be attributed to the additional
“pull” by the SIDIS data.
Any lower cut in Q2 is kinematically correlated with the

lowest value of x accessible in the two SIDIS experiments.
For instance, demanding Q2 ≥ 3 GeV2 removes all
COMPASS data in the range 0.004 ≤ x ≤ 0.02, and about
half of the data with 0.02 ≤ x ≤ 0.06. Because of the lower
c.m. system energy of HERMES, its number of data points
is reduced even more strongly when increasing the lower
Q2 cut. Previous global analyses [5,10,18] suggest that
there are tensions between the HERMES and COMPASS
SIDIS datasets. It appears that this tension is somewhat
mitigated by inclusion of the NNLO terms and also by
increasing the lower cut on Q2, although it still persists at
some level, as seen from the relatively large values of χ2

relative to the number of data points for HERMES.
Figures 1 and 2 compare our NLO and NNLO results to

the COMPASS and HERMES SIDIS multiplicities in a few
representative bins in x. We normalize all results to the
baseline NLO fit with Q2 ≥ 1.5 GeV2. Using this cut also
at NNLO tends to give a result that slightly overestimates
the SIDIS multiplicities, especially at lower values of x or
Q2, which is the reason for the larger χ2 value seen for this

cut in Table I. This changes once we increase the cut to
Q2 ≥ 3.0 GeV2, also shown for NNLO in Figs. 1 and 2,
where a clearly improved description of the multiplicities is
observed. Note that we show the NNLO results for this cut
even for the Q2 values below 3.0 GeV2, so that the
deterioration in the region not included in that fit can
be seen.
It is very encouraging that our NNLO analysis based on

the approximate NNLO corrections for SIDIS shows an
overall improvement in χ2 relative to NLO once we go
beyond Q2 ¼ 2 GeV2. It is an interesting question, how-
ever, why the situation is opposite when the lower cutQ2 ≥
1.5 GeV2 is used. We first note that the lack of improve-
ment at NNLO when low Q2 are admitted, as well as the
progressive improvements with stricter cuts on Q2, are not
due to the tensions between the different sets of SIDIS data
mentioned above. In fact, similar results as in Table I
are also obtained in fits using exclusively SIA and
COMPASS data.
Two other possible explanations come to mind. Clearly,

values of Q2 below 3 GeV2 or even 2 GeV2 raise concerns
about the applicability of a leading-power factorized
framework that describes the cross section in terms of just
PDFs, FFs, and perturbative hard-scattering cross sections.
It is quite possible that the trends seen at the lowest Q2

values indicate the onset and perhaps even dominance of
power corrections, very little about which is known
theoretically for SIDIS. In a similar vein, at low Q2 one
may question the dominance of the current fragmentation
regime [35]. Even at a practical level the region Q2 <
2 GeV2 is tedious in our analysis: All modern sets of PDFs
incorporate a fairly large Q2 cut on the fixed-target DIS
data entering their global analysis. When computing the
SIDIS multiplicities we therefore need to resort to extrap-
olations of the PDF sets outside the region of their appli-
cability for a considerable amount of the available data,
in particular, for HERMES kinematics [36]. The cut Q2 ≥
3.0 GeV2 helps to mitigate this otherwise unavoidable—
and hard to quantify—ambiguity stemming from the choice
of PDFs. We have verified, however, that replacing the
NNPDF4.0 set [33], adopted throughout our Letter, by the
latest MSHT set of PDFs [37] does not significantly change
our results and conclusions.

TABLE I. Partial and total χ2 values per data point for the sets included in our NLO and NNLO global fits for different lower
cuts on Q2.

Experiment

Q2 ≥ 1.5 GeV2 Q2 ≥ 2.0 GeV2 Q2 ≥ 2.3 GeV2 Q2 ≥ 3.0 GeV2

Data points NLO NNLO Data points NLO NNLO Data points NLO NNLO Data points NLO NNLO

SIA 288 1.05 0.96 288 0.91 0.87 288 0.90 0.91 288 0.93 0.86
COMPASS 510 0.98 1.14 456 0.91 1.04 446 0.91 0.92 376 0.94 0.93
HERMES 224 2.24 2.27 160 2.40 2.08 128 2.71 2.35 96 2.75 2.26
Total 1022 1.27 1.33 904 1.17 1.17 862 1.17 1.13 760 1.16 1.07
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The other possibility is that the approximate NNLO
corrections for SIDIS might miss some significant con-
tributions not associated with the threshold regime. Since
threshold resummation only addresses the region of large x
and z such nonthreshold contributions, if sizable, could
indeed make the approximate NNLO description unreliable
for low values of x and hence Q2. To see whether there are
indications of such a behavior, we have redone the NNLO
calculation with Q2 ≥ 1.5 GeV2, but using the FFs
obtained in the NLO fit. The corresponding results are
also shown in Figs. 1 and 2. Here the idea is that the ratio to
the NLO multiplicity will help identify any regions where
sizable NNLO corrections arise just from the partonic hard-
scattering cross sections. As one can see, for large values of
z there are significant enhancements at NNLO. The thresh-
old logarithms are precisely expected to generate such
enhancements. However, we also observe downward
NNLO corrections at lower values of z, and here especially
at lower Q2 and hence x. Clearly, based on this feature
alone we cannot judge whether this reduction of the cross
section at NNLO is an artifact of the near-threshold
approximation. This would only become possible with a
future full NNLO calculation for SIDIS. For now we just
issue a word of caution concerning this point.
We finally consider the FFs that our fits produce.

Figure 3 shows the functions for πþ production, evolved
to Q2 ¼ 100 GeV2, for utot ≡ uþ ū, dtot ≡ dþ d̄, d ¼ ū,
and the flavor singlet combination Σ, along with uncer-
tainty estimates at 68% C.L. (confidence level). We show
the resulting NLO and NNLO distributions both for

Q2 ≥ 1.5 GeV2 and Q2 ≥ 3 GeV2 in the fit. All distribu-
tions shown are well constrained by our new global fit to
SIA and SIDIS data at NNLO accuracy, while the gluon
and strange quark FFs remain largely undetermined. The
rightmost panels of Fig. 3, which present the ratios of the
NNLO quark FFs over the NLO ones, best illustrate
the distinct, z-dependent pattern of modifications needed
when switching from NLO to NNLO accuracy. The most
significant feature at NNLO is the suppression of the FFs
for z≳ 0.6, needed to counteract the enhancements in the
partonic cross sections at large z due to the threshold
logarithms. We note that the cut Q2 ≥ 3.0 GeV2 mainly

FIG. 1. Comparison of our NLO and NNLO fits with Q2 ≥
1.5 GeV2 to the COMPASS πþ multiplicities for some repre-
sentative bins of x, normalized to the NLO results. The dashed
lines show the change of the NNLO fit when the Q2 ≥ 3 GeV2

cut is implemented. For a “test calculation” represented by the
dotted lines we have used the FFs from the NLO fit in the NNLO
calculation (see text). For better clarity, all results are scaled and
shifted by constant factors.

FIG. 2. Same as in Fig. 1 but for the HERMES π� SIDIS data
on a proton target, for two different projections of the data. The
shaded areas indicate the regions excluded from the fit by the
Q2 ≥ 1.5 GeV2 cut.

FIG. 3. Our NLO and NNLO πþ FFs for utot, dtot, ū, and the
flavor singlet combination Σ at Q2 ¼ 100 GeV2, with 68% C.L.
uncertainty estimates. The rightmost panels give the ratios to our
NLO result.
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leads to an enhancement of utot below z ∼ 0.6 and a largely
z independent increase of the unfavored sea quark FFs.
Additionally, while the NLO and NNLO uncertainties are
comparable for a Q2 cut of 1.5 GeV2, imposing the more
stringent Q2 cut leads to a sizable reduction in the NNLO
error for z≳ 0.2.
Conclusions.—We have presented the first next-to-next-

to-leading order global analysis of parton-to-pion fragmen-
tation functions, based on the existing data on single-
inclusive electron-positron annihilation and semi-inclusive
deep-inelastic scattering. The cross sections for the latter
were obtained using approximate NNLO corrections pre-
viously derived within the threshold resummation formal-
ism. Our Letter is motivated by the desire to improve the
theoretical framework for the precision analysis of hadron
production data. This task appears particularly important in
view of the future EIC.
The FFs we find at NNLO are overall close to the NLO

ones, indicating good perturbative stability of the processes
used for the extraction of PDFs. This is especially true for
the flavor singlet and the total up and down quark FFs.
As expected, the most noticeable difference at NNLO is the
depletion of the FFs in the high-z region.
We have found that the NNLO corrections improve the

overall quality of the fit to the data, but do so only when a
lower cut of at least Q2 ≥ 2 GeV2 is implemented. With a
yet more stringent cutQ2 ≥ 3 GeV2 the NNLO fit becomes
markedly better than the NLO one. This may indicate that
the low-Q2 regime in SIDIS is not well suited for an
analysis in terms of factorized cross sections. The extrapo-
lation of the PDFs beyond the region where they are
constrained by data might be an additional source of
inconsistencies. That said, also the study of NNLO cor-
rections not directly associated with the threshold regime
will deserve further attention in the future. Ultimately a full
NNLO calculation for SIDIS will be required to describe
future EIC data which will likely be taken in kinematic
regions quite far away from the threshold regime. In any
case, we believe that our study is an important step on the
way to future fully global NNLO analyses of FFs that
include also data from hadron production in pp collisions.

I. B. wishes to thank the University of Tübingen for
hospitality during the completion of the work. This work
was supported in part by CONICET, ANPCyT, UBACyT,
and by Deutsche Forschungsgemeinschaft (DFG) through
the Research Unit FOR 2926 (Project No. 40824754).

*iborsa@df.uba.ar
†sassot@df.uba.ar
‡deflo@unsam.edu.ar
§marco.stratmann@uni-tuebingen.de
∥werner.vogelsang@uni-tuebingen.de

[1] J. C. Collins and D. E. Soper, Nucl. Phys. B194, 445 (1982).

[2] J. C. Collins, D. E. Soper, and G. F. Sterman, Adv. Ser. Dir.
High Energy Phys. 5, 1 (1989).

[3] See, for instance, D. De Florian, G. A. Lucero, R. Sassot, M.
Stratmann, and W. Vogelsang, Phys. Rev. D 100, 114027
(2019).

[4] See, for instance, R. Sassot, M. Stratmann, and P. Zurita,
Phys. Rev. D 81, 054001 (2010).

[5] D. de Florian, R. Sassot, and M. Stratmann, Phys. Rev. D
75, 114010 (2007).

[6] A. Mitov, S. Moch, and A. Vogt, Phys. Lett. B 638, 61
(2006).

[7] A. A. Almasy, S. Moch, and A. Vogt, Nucl. Phys. B854, 133
(2012).

[8] D. de Florian, R. Sassot, M. Epele, R. J. Hernández-
Pinto, and M. Stratmann, Phys. Rev. D 91, 014035 (2015).

[9] N. Sato, J. J. Ethier, W. Melnitchouk, M. Hirai, S. Kumano,
and A. Accardi, Phys. Rev. D 94, 114004 (2016).

[10] D. de Florian, M. Epele, R. J. Hernandez-Pinto,
R. Sassot, and M. Stratmann, Phys. Rev. D 95, 094019
(2017).

[11] V. Bertone, S. Carrazza, N. P. Hartland, E. R. Nocera, and J.
Rojo (NNPDF Collaboration), Eur. Phys. J. C 77, 516
(2017).

[12] D. P. Anderle, T. Kaufmann, M. Stratmann, F. Ringer, and I.
Vitev, Phys. Rev. D 96, 034028 (2017).

[13] M. Salajegheh, S. M. Nejad, H. Khanpour, B. A. Kniehl,
and M. Soleymaninia, Phys. Rev. D 99, 114001 (2019).

[14] E. Moffat, W. Melnitchouk, T. C. Rogers, and N. Sato (JAM
Collaboration), Phys. Rev. D 104, 016015 (2021).

[15] R. Abdul Khalek, V. Bertone, and E. R. Nocera, Phys. Rev.
D 104, 034007 (2021).

[16] M. Soleymaninia, H. Abdolmaleki, and H. Khanpour, Phys.
Rev. D 102, 114029 (2020).

[17] H. Abdolmaleki, M. Soleymaninia, H. Khanpour, S.
Amoroso, F. Giuli, A. Glazov, A. Luszczak, F. Olness,
and O. Zenaiev, Phys. Rev. D 104, 056019 (2021).

[18] I. Borsa, D. de Florian, R. Sassot, and M. Stratmann, Phys.
Rev. D 105, L031502 (2022).

[19] M. L. Czakon, T. Generet, A. Mitov, and R. Poncelet,
J. High Energy Phys. 10 (2021) 216.

[20] M. G. Echevarria, I. Scimemi, and A. Vladimirov, J. High
Energy Phys. 09 (2016) 004.

[21] D. P. Anderle, M. Stratmann, and F. Ringer, Phys. Rev. D
92, 114017 (2015).

[22] D. P. Anderle, T. Kaufmann, M. Stratmann, and F. Ringer,
Phys. Rev. D 95, 054003 (2017).

[23] For a current list of SIA datasets, see, e.g., Ref. [18].
[24] A. Airapetian et al. (HERMES Collaboration), Phys. Rev. D

87, 074029 (2013).
[25] C. Adolph et al. (COMPASS Collaboration), Phys. Lett. B

764, 1 (2017).
[26] M. Abele, D. de Florian, and W. Vogelsang, Phys. Rev. D

104, 094046 (2021).
[27] R. Abdul Khalek et al., arXiv:2103.05419.
[28] P. Hinderer, F. Ringer, G. Sterman, and W. Vogelsang, Phys.

Rev. D 99, 054019 (2019).
[29] T. Gehrmann and R. Schürmann, J. High Energy Phys. 04

(2022) 031.
[30] For a current list of pp datasets, see, e.g., Ref. [18].
[31] A. Vogt, Comput. Phys. Commun. 170, 65 (2005).

PHYSICAL REVIEW LETTERS 129, 012002 (2022)

012002-5

https://doi.org/10.1016/0550-3213(82)90021-9
https://doi.org/10.1142/ASDHEP
https://doi.org/10.1142/ASDHEP
https://doi.org/10.1103/PhysRevD.100.114027
https://doi.org/10.1103/PhysRevD.100.114027
https://doi.org/10.1103/PhysRevD.81.054001
https://doi.org/10.1103/PhysRevD.75.114010
https://doi.org/10.1103/PhysRevD.75.114010
https://doi.org/10.1016/j.physletb.2006.05.005
https://doi.org/10.1016/j.physletb.2006.05.005
https://doi.org/10.1016/j.nuclphysb.2011.08.028
https://doi.org/10.1016/j.nuclphysb.2011.08.028
https://doi.org/10.1103/PhysRevD.91.014035
https://doi.org/10.1103/PhysRevD.94.114004
https://doi.org/10.1103/PhysRevD.95.094019
https://doi.org/10.1103/PhysRevD.95.094019
https://doi.org/10.1140/epjc/s10052-017-5088-y
https://doi.org/10.1140/epjc/s10052-017-5088-y
https://doi.org/10.1103/PhysRevD.96.034028
https://doi.org/10.1103/PhysRevD.99.114001
https://doi.org/10.1103/PhysRevD.104.016015
https://doi.org/10.1103/PhysRevD.104.034007
https://doi.org/10.1103/PhysRevD.104.034007
https://doi.org/10.1103/PhysRevD.102.114029
https://doi.org/10.1103/PhysRevD.102.114029
https://doi.org/10.1103/PhysRevD.104.056019
https://doi.org/10.1103/PhysRevD.105.L031502
https://doi.org/10.1103/PhysRevD.105.L031502
https://doi.org/10.1007/JHEP10(2021)216
https://doi.org/10.1007/JHEP09(2016)004
https://doi.org/10.1007/JHEP09(2016)004
https://doi.org/10.1103/PhysRevD.92.114017
https://doi.org/10.1103/PhysRevD.92.114017
https://doi.org/10.1103/PhysRevD.95.054003
https://doi.org/10.1103/PhysRevD.87.074029
https://doi.org/10.1103/PhysRevD.87.074029
https://doi.org/10.1016/j.physletb.2016.09.042
https://doi.org/10.1016/j.physletb.2016.09.042
https://doi.org/10.1103/PhysRevD.104.094046
https://doi.org/10.1103/PhysRevD.104.094046
https://arXiv.org/abs/2103.05419
https://doi.org/10.1103/PhysRevD.99.054019
https://doi.org/10.1103/PhysRevD.99.054019
https://doi.org/10.1007/JHEP04(2022)031
https://doi.org/10.1007/JHEP04(2022)031
https://doi.org/10.1016/j.cpc.2005.03.103


[32] V. Bertone, S. Carrazza, and J. Rojo, Comput. Phys.
Commun. 185, 1647 (2014).

[33] R. D. Ball, S. Carrazza, J. Cruz-Martinez, L. Del Debbio, S.
Forte, T. Giani, S. Iranipour, Z. Kassabov, J. I. Latorre, and
E. R. Nocera et al., Eur. Phys. J. C 82, 428 (2022).

[34] M. Stratmann and W. Vogelsang, Phys. Rev. D 64, 114007
(2001).

[35] M. Boglione, M. Diefenthaler, S. Dolan, L. Gamberg, W.
Melnitchouk, D. Pitonyak, A. Prokudin, N. Sato, and Z.
Scalyer, J. High Energy Phys. 04 (2022) 084.

[36] I. Borsa, R. Sassot, and M. Stratmann, Phys. Rev. D 96,
094020 (2017).

[37] S. Bailey, T. Cridge, L. A. Harland-Lang, A. D. Martin, and
R. S. Thorne, Eur. Phys. J. C 81, 341 (2021).

PHYSICAL REVIEW LETTERS 129, 012002 (2022)

012002-6

https://doi.org/10.1016/j.cpc.2014.03.007
https://doi.org/10.1016/j.cpc.2014.03.007
https://doi.org/10.1140/epjc/s10052-022-10328-7
https://doi.org/10.1103/PhysRevD.64.114007
https://doi.org/10.1103/PhysRevD.64.114007
https://doi.org/10.1007/JHEP04(2022)084[c
https://doi.org/10.1103/PhysRevD.96.094020
https://doi.org/10.1103/PhysRevD.96.094020
https://doi.org/10.1140/epjc/s10052-021-09057-0

