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We point out that the Hermitian and anti-Hermitian components of the effective Hamiltonian for
decaying neutrinos cannot be simultaneously diagonalized by unitary transformations for all matter
densities. We develop a formalism for the two-flavor neutrino propagation through matter of uniform
density, for neutrino decay to invisible states. Employing a resummation of the Zassenhaus expansion, we
obtain compact analytic expressions for neutrino survival and conversion probabilities, to first and second
order in the “mismatch parameter” γ̄.
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Introduction.—Neutrino oscillation experiments have
unequivocally established that neutrinos have masses,
and their flavors mix. However, data still allow the
possibility of new physics effects at a subleading level.
Neutrino decay to lighter invisible states [1–3] is one such
possibility. Solutions to neutrino anomalies via a combi-
nation of oscillation and decay have been studied [4–16].
Most of these papers have analyzed neutrino oscillation
probabilities in vacuum, taking the mass eigenstates to be
identical with the decay eigenstates for their analytic
treatment. Matter effects, if relevant, have been imple-
mented numerically.
The effective Hamiltonian for neutrino decay is non-

Hermitian, with its Hermitian component corresponding to
the energy and the anti-Hermitian component correspond-
ing to decay. The assumption of identifying the mass
(energy) eigenstates to decay eigenstates is not valid in
general. Indeed, even in vacuum, these two components
need not commute, and hence need not be diagonalizable
simultaneously by unitary transformations. Even for the
special circumstances or models where the mass eigenstates
and decay eigenstates coincide in vacuum, matter effects
make this mismatch inevitable.
The non-Hermitian Hamiltonian itself may be diagon-

alized by a similarity transformation employing a nonuni-
tary matrix. Using this principle, the oscillation
probabilities in the two-flavor scenario in vacuum were
approximately calculated in [17]. A similar exercise has

also been performed in [18], albeit in the context of visible
neutrino decays in matter, but no compact analytic expres-
sions for probabilities have been presented.
In this Letter, we present a novel prescription for

computing the neutrino survival or conversion probabilities
for the scenario with simultaneous oscillation and invisible
decay of neutrinos propagating in matter of uniform
density. We represent the effective Hamiltonian matrix
by Hm, where

Hm ¼ Hm − iΓm=2: ð1Þ

Here Hm and Γm are Hermitian matrices. We choose to
work in the basis where the Hermitian part of the
Hamiltonian is diagonalized. This is the same as the basis
of neutrino mass eigenstates in matter in the absence of
decay. In this basis, Hm is a diagonal matrix whose
elements depend on neutrino mass squared differences,
neutrino energy, and Earth matter potential. The flavor
evolution of neutrinos takes the form

νðtÞ ¼ e−iHmtνð0Þ: ð2Þ

Note that since ½Hm;Γm� ≠ 0 in general, Hm is not a
normal matrix, and e−iHmt ≠ e−iHmte−Γmt=2. Thus, one has
to express e−iHmt in terms of a chain of commutators using
the inverse Baker-Campbell-Hausdorff (BCH) formula,
also known as the Zassenhaus formula [19,20]. The
standard form of this formula cannot be truncated to a
finite number of terms in the current scenario, therefore we
employ a resummation technique using its series expansion
[21]. The procedure facilitates a perturbative expansion of
the neutrino survival and conversion probabilities, in terms
of a small parameter γ̄ that characterizes the mismatch
between the eigenstates of Hm and Γm.
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Our prescription leads to explicit analytic forms for two-
flavor neutrino probabilities in matter. The probabilities
in vacuum, as well as those calculated by using the
assumption of coincident mass and decay eigenstates,
emerge as special cases. This formulation is completely
new, and provides a clear framework for analyzing neutrino
decay in vacuum and matter on the same footing.
Moreover, the techniques can be applied to any situation
where quantum mechanical evolution in terms of non-
Hermitian Hamiltonian is to be calculated.
Formalism.—The effective Hamiltonian may be written

in the basis of neutrino mass eigenstates in matter as

Hm ¼
�

a1 − ib1 − 1
2
iγeiχ

− 1
2
iγe−iχ a2 − ib2

�
; ð3Þ

where ai; bi; γ; χ are real. Since Γm needs to be positive
semidefinite, bi ≥ 0 and γ2 ≤ 4b1b2. The sign of γ is taken
to be positive; this defines the value of χ uniquely. The
Hermitian part of this Hamiltonian is diagonal, which is
ensured by the choice of basis. The anti-Hermitian part is
composed of the diagonal components involving bi,
and the off-diagonal components involving γ. Note that
bi ¼ ½Γm�ii=2, and γeiχ ¼ ½Γm�12 ¼ ½Γm��21.
For future convenience, we define the complex para-

meter di ≡ ai − ibi, the differences Δa ≡ a2 − a1;
Δb ≡ b2 − b1;Δd ≡ d2 − d1, and the dimensionless ratios

γ̄ ≡ γ

jΔdj
; Δ̄a ≡ Δa

jΔdj
; Δ̄b ≡ Δb

jΔdj
: ð4Þ

Then, in terms of the identity matrix I and

X≡ −
iΔdt
2

�−1 0

0 1

�
; Y ≡ −

γt
2

�
0 eiχ

e−iχ 0

�
; ð5Þ

one may write

−iHmt ¼ −
it
2
ðd1 þ d2ÞI þXþ Y : ð6Þ

The commutator of X and Y is

LXY ≡ ½X;Y � ¼ i
γΔdt2

2

�
0 −eiχ

e−iχ 0

�
; ð7Þ

which will play a key role in our analysis.
Zassenhaus expansion.—In order to calculate the evo-

lution matrix e−iHmt, keeping aside the term proportional to
the identity matrix, we need to calculate the quantity eXþY.
This may be written in terms of the Zassenhaus expansion
[19,20] as

eXþY ¼ eXeYe−
1
2
½X;Y �e1

6
ð2½Y ;½X;Y ��þ½X;½X;Y ��Þ � � � : ð8Þ

Note that jY j ∼ γ̄jXj and LXY ∼ γ̄jXj2, where the absolute
sign ðj � � � jÞ represents a typical nonzero element in the
corresponding matrix. This implies that, in general, for
higher-order commutators, Lk−1

X Y ∼ γ̄jXjk. Therefore, it is
not possible to truncate the expansion in Eq. (8) at any fixed
order of commutators. One needs to collect OðγkÞ terms
from commutators of all orders by performing a resum-
mation procedure. We therefore employ the expression for
the Zassenhaus expansion in terms of a series [21]:

eXþY ¼
�
1þ

X∞
p¼1

X∞
n1;…;np¼1

np…n1
npðnp þ np−1Þ…ðnp þ…þ n1Þ

Ynp…Yn1

�
eX; ð9Þ

where Yn ¼ ð1=n!ÞLn−1
X Y .

To obtain the expansion up to Oðγ̄Þ and Oðγ̄2Þ, we need
to perform the summation for p ¼ 1 and p ¼ 1, 2,
respectively, since every Y comes with a factor of γ̄.
Thus for an accuracy of Oðγ̄2Þ, we can truncate

eXþY ≈
�
1þ

X∞
n1¼1

Yn1 þ
X∞
n1¼1

X∞
n2¼1

n1
ðn1 þ n2Þ

Yn2Yn1

�
eX;

ð10Þ

with the double summation term not needed for Oðγ̄Þ
accuracy. One may use

Yn ¼
1

n!
ðiΔdtÞn−1σn−13 Y ð11Þ

in order to get closed functional forms for the infinite sums.
Here σ3 is the Pauli matrix.
Neutrino flavor conversions up toOðγ̄Þ.—The truncation

of the right-hand side of Eq. (10) to the first summation
gives

eXþY ¼
�
1þ sinðΔdtÞ

Δdt
Y −

cosðΔdtÞ − 1

Δdt
iσ3Y

�
eX: ð12Þ

The amplitude matrix in the mass basis in matter is then

Am ≡ e−iHmt ¼

0
B@ e−id1t −i γe

iχg−ðtÞ
Δd

−i γe
−iχg−ðtÞ
Δd

e−id2t

1
CA; ð13Þ
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where the functions g�ðtÞ are defined as

g�ðtÞ ¼
1

2
ðe−id2t � e−id1tÞ: ð14Þ

The neutrino flavor conversion probability Pβα for νβ →
να conversion may be obtained by calculating the flavor
conversion amplitude

½Af�αβ ¼ ½Ume−iHmtU†
m�αβ; ð15Þ

and further, Pβα ¼ jAαβj2. In the two-flavor system,

Um ¼
�

cos θm sin θm
− sin θm cos θm

�
ð16Þ

is the unitary rotation matrix. One can write

Af ¼
�
g−ðtÞAðχÞ þ gþðtÞ g−ðtÞBðχÞ

g−ðtÞBð−χÞ −g−ðtÞAðχÞ þ gþðtÞ

�
; ð17Þ

where AðχÞ and BðχÞ are given in Table I. The χ
dependence of A and B is implicit wherever not stated
explicitly.
The survival probability of a neutrino of flavor α is

Pαα ¼
e−ðb1þb2Þt

2
½ð1þ jAj2Þ coshðΔbtÞ:

þ ð1 − jAj2Þ cosðΔatÞ − 2ReðAÞ sinhðΔbtÞ
þ 2ImðAÞ sinðΔatÞ�: ð18Þ

The survival probability Pββ for the other flavor may be
obtained from Pαα with the replacement A → −A. The
probability for νβ → να conversion is

Pβα ¼
e−ðb1þb2Þt

2
jBðχÞj2½coshðΔbtÞ − cosðΔatÞ�: ð19Þ

The conversion probability Pαβ is obtained by the replace-
ment χ → −χ. The explicit expressions for the terms in
Eqs. (18) and (19) are given in Table II.
It should be noted that in the two-flavor approximation in

the absence of neutrino decay, i.e., b1 ¼ b2 ¼ γ ¼ 0, we
have Pαα ¼ Pββ and Pβα ¼ Pαβ. These equalities no longer
hold in the presence of decay.

Neutrino flavor conversions up to Oðγ̄2Þ.—For proba-
bilities accurate up to order γ̄2, we need to calculate the
term in Eq. (10) that involves a double summation. This
sum may be rewritten as

1

2

X∞
n1¼1

�X∞
n2¼1

Yn2Yn1 þ
X∞
n2¼n1

n1 − n2
n1 þ n2

½Yn2 ;Yn1 �
�
; ð20Þ

whose closed form may be obtained using the observation

½Yn2 ;Yn1 � ¼
ð−1Þn2 − ð−1Þn1

4n1!n2!
ðiΔdtÞn2þn1−2ðγtÞ2σ3: ð21Þ

The eigenvalues ofHm get corrections at Oðγ̄2Þ, and it is
convenient to write the probabilities at this (and higher)
order in terms of the difference of the exact eigenvalues

ΔD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

d − γ2
q

: ð22Þ

The probabilities at Oðγ̄2Þ can be written in the same form
as Eqs. (18) and (19) with the replacements

Δa → ReðΔDÞ; Δb → −ImðΔDÞ; ð23Þ

and the entries in Table I replaced by

AðχÞ → Að0Þ þ γAð1Þ − γ2 cos 2θm=ð2Δ2
dÞ; ð24Þ

BðχÞ → Að0Þ þ γAð1Þ þ γ2 sin 2θm=ð2Δ2
dÞ; ð25Þ

The entries corresponding to Table II can be calculated
using Eqs. (24) and (25).
Exact results.—For the two-flavor system, it is also

possible to obtain the exact expressions for neutrino
survival and conversion probabilities by expressing
−iHmt as a linear combination of Pauli matrices [22].
For any 2 × 2 matrix K, one can write

eK ¼ ek0
�
I cosh kþ k⃗ · σ⃗

k
sinh k

�
; ð26Þ

where kμ ≡ TrðK · σμÞ=2, and k≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ k23

p
. For the

matrix K ¼ −iHmt as in Eq. (3), this corresponds to

TABLE I. The terms in the amplitude matrix Af in the flavor
basis used in Eq. (17), calculated up to Oðγ̄Þ.

Term Expression

AðχÞ≡ Að0Þ þ γAð1Þ − cos 2θm − iðγ=ΔdÞ sin 2θm cos χ

BðχÞ≡ Bð0Þ þ γBð1Þ sin 2θm − iðγ=ΔdÞðcos 2θm cos χ þ i sin χÞ

TABLE II. The terms to be used in the probabilities shown in
Eqs. (18) and (19), calculated up to Oðγ̄Þ.

Term Expression

ReðAÞ − cos 2θm þ γ̄Δ̄b sin 2θm cos χ
ImðAÞ −γ̄Δ̄a sin 2θm cos χ
jAj2 cos2 2θm − 2γ̄Δ̄b sin 2θm cos 2θm cos χ
jBj2 sin2 2θm þ 2γ̄ sin 2θmðΔ̄a sin χ þ Δ̄b cos 2θm cos χÞ
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k0 ¼ −
it
2
ðd1 þ d2Þ; k ¼ itΔD

2
: ð27Þ

This leads to the exact probabilities that can be written in
the same form as Eqs. (18) and (19), with the replacements
given in Eq. (23), and

AðχÞ → Δd

ΔD
AðχÞ; BðχÞ → Δd

ΔD
BðχÞ; ð28Þ

in Table I. The entries corresponding to Table II can be
calculated using Eq. (28).
Numerical comparison.—We now demonstrate the con-

vergence of our analytic results towards the exact neutrino
oscillation probabilities, when higher and higher order
terms in γ̄ are included. For the sake of illustration, we
choose the survival probability of νμ with energy E ∼ GeV,
for a baseline of 295 km. This would correspond to the
probability relevant for the T2K and T2HK experiments.
Since matter effects in the νμ − ντ sector are negligible at
small baselines, we choose θm ¼ θatm ¼ 45°. We take
Δa ¼ 2.56 × 10−3 eV2=ð2EÞ, with the decay parameters
ðb1; b2; γÞ ¼ ð3; 6; 8Þ × 10−5 eV2=ð2EÞ, χ ¼ π=4, where
the 1=E dependence accounts for time dilation. Note that
our parameter choices satisfy the desired conditions
b1; b2 ≪ jΔaj (the effects of decay should be subdominant
to those of oscillations), and γ2 < 4b1b2 (positive definite-
ness of the decay matrix).
The left panel in Fig. 1 shows the probability PμμðEÞ

without decay, and successive approximations at Oðγ̄Þ and
Oðγ̄2Þ in the presence of decay. The incorrect approxima-
tion that neglects the commutator ½X;Y � is also indicated.
The convergence towards the exact solution is more clearly
demonstrated in the right panel of Fig. 1, where we show
the values of the error

ΔPμμ ≡ PμμðanalyticÞ − PμμðexactÞ ð29Þ

on a logarithmic scale. Clearly, the inclusion of Oðγ̄Þ
and Oðγ̄2Þ terms reduces the error by orders of magnitude.
Comparison with earlier results.—In Ref. [17], neutrino

decay in vacuum was analyzed using diagonalization of the
non-Hermitian Hamiltonian with Hdiag ¼ N−1HN, using a
nonunitary matrix N. We find that the most general form of
the nonunitary matrix that would diagonalize a non-
Hermitian H is

N ¼
�

cos θm sin θm
− sin θm cos θm

�� 1 −i γeiχ

ΔDþΔd

i γe−iχ

ΔDþΔd
1

�
: ð30Þ

Note that since ðΔD þ ΔdÞ is complex, the off-diagonal
elements of the second matrix in Eq. (30) are not complex
conjugates of one another, an assumption implicitly made
in Ref. [17]. This introduces corrections in the neutrino
conversion probabilities of ∼Oðγ̄Δ̄bÞ. These may be
neglected if one assumes Δ̄b ∼Oðγ̄Þ; however, these will
then contribute to Oðγ̄2Þ corrections.
For the special case where only the mass eigenstate ν2

in vacuum decays (with lifetime τ2), the probabilities
in matter may be obtained by the following identifications:

a1;2 ¼
m̃2

1;2

2E
; b1;2 ¼

α2
4E

½1 ∓ cos½2ðθ − θmÞ�; ð31Þ

χ ¼ 0; γ ¼ α2
2E

sin½2ðθ − θmÞ�: ð32Þ

FIG. 1. The left panel shows the survival probability Pμμ calculated exactly, and by using the analytic expressions in the text, in the
presence and absence of neutrino decay. The right panel shows the differences between the analytic expressions and the exact results for
decay. The thick (thin) lines correspond to ΔPμμ > 0 (ΔPμμ < 0). The sharp dips in the right panel correspond to those energies where
the analytic expressions give the same values as the exact ones.
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Here, m̃iðmiÞ and θmðθÞ are the mass eigenvalues and
mixing angle in matter (vacuum), and α2 ¼ m2=τ2. Note
that all the elements of the Γm matrix are now nonzero
(b1; b2; γ ≠ 0), and hence both the neutrino mass eigen-
states show decaying behavior. This prescription gives the
correct analytic probability expressions for decaying neu-
trinos in matter, which are hitherto not explicitly given in
the literature. In the vacuum limit (θm → θ, m̃i → mi, b1 →
0 and γ → 0) the standard probabilities in vacuum [23] are
obtained.
Concluding remarks.—Neutrino decay is characterized

by a non-Hermitian Hamiltonian, which cannot be diagon-
alized by a unitary transformation. Further, there is no
guarantee that decay eigenstates are the same as the mass
eigenstates, although it is usually assumed. We point out
that even if these two sets are the same in vacuum, matter
effects necessarily change this simple picture, warranting a
more careful treatment.
In this Letter, we develop a novel formalism which can

address the above two issues, and allows one to obtain
compact analytic forms for two-flavor probabilities even in
matter. The crucial step is to perform the analysis in the
basis of mass eigenstates in matter in the absence of decay,
so that the Hermitian component of the Hamiltonian is
diagonal. The anti-Hermitian decay matrix is not diagonal
in this basis, and does not commute with the Hermitian part.
We introduce a resummation of commutators in the
Zassenhaus expansion for the time evolution matrix.
Using this, we compute the neutrino probabilities pertur-
batively in the small parameter γ̄ which characterizes the
mismatch between mass and decay eigenstates. This is the
first time such a formulation has been used to treat
propagation of unstable neutrinos in matter.
In this work, we have presented the exact expressions as

well as perturbative expansions for two-flavor neutrino
probabilities. The framework of the latter may be easily
extended to three flavors [24]. Moreover, the approximate
analytic expressions are useful to bring out the underlying
physics. The scope of application of this method goes
beyond just the neutrino decay hypothesis; the formalism
may be applied to various other phenomena such as the
combined treatment of oscillations and absorption for high
energy neutrinos, axion-photon oscillations in an optically
semi-opaque medium, or even the neutral-meson mixing
systems.
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