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Although the viscosity of a fluid ranges over several orders of magnitude and is extremely sensitive to
microscopic structure and molecular interactions, it has been conjectured that its (opportunely normalized)
minimum displays a universal value which is experimentally approached in strongly coupled fluids such as
the quark-gluon plasma. At the same time, recent findings suggest that hydrodynamics could serve as a
universal attractor even when the deformation gradients are large and that dissipative transport coefficients,
such as viscosity, could still display a universal behavior far from equilibrium. Motivated by these
observations, we consider the real-time dissipative dynamics of several holographic models under large
shear deformations. In all the cases considered, we observe that at late time both the viscosity-entropy
density ratio and the dimensionless ratio between energy density and entropy density approach a constant
value. Whenever the shear rate in units of the energy density is small at late time, these values coincide with
the expectations from near equilibrium hydrodynamics. Surprisingly, even when this is not the case, and the
system at late time is far from equilibrium, the viscosity-to-entropy ratio approaches a constant which
decreases monotonically with the dimensionless shear rate and can be parametrically smaller than the
hydrodynamic result.
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Introduction.—Viscosity measures the resistance of a
fluid to shearing motion and represents one of the most
fundamental properties of liquid dynamics, whose impor-
tance ranges from biology and chemistry to cosmology and
relativistic heavy-ion collisions. Although its value spans
many orders of magnitude and strongly depends on the
microscopic interactions and structure, its minimum dis-
plays a certain degree of universality. This was first
suggested by Purcell [1,2] and then emphasized in the
famous Kovtun-Son-Starinets (KSS) bound [3] which has
already found numerous experimental confirmations [4–7]
(see Ref. [8] for a review). The universal character has also
been generalized to different diffusive processes [9] and
recently confirmed in a large class of nonrelativistic liquids
[10–12].
From a dynamical perspective, the viscosity η specifies

the relation between the shear stress σ and the rate of shear
deformation _γ:

η≡ σ

_γ
; ð1Þ

and, for small shear rates, it can be consistently assumed to
be a constant. On the contrary, when the deformation rate
becomes large, this remains true only for a small subclass of
systems known as Newtonian fluids. In all other cases
[13,14], the viscosity becomes a nonlinear function of the
shear rate itself, producing a plethora of interesting and
ubiquitous phenomena such as shear thicknening, shear
thinning, and many more. Familiar examples of non-
Newtonian fluids are whipped cream, wall paints, blood,
and wet sand. In these scenarios, it is customary to define
an apparent viscosity σ ¼ ηð_γÞ_γ which converges to the
near-equilibrium viscosity η0 only in the limit _γτ ≪ 1
(where τ is the characteristic relaxation time of the system),
and that can be easily measured in rheological experiments
using a viscometer.
Importantly, whenever the shear rate is large with respect

to the characteristic energy scale of the system, the fluid
finds itself in a far-from-equilibrium state that cannot be
described by linearized hydrodynamics, intended as the
effective description of the long wavelength and late-time
physics, and which a priori is not expected to reveal
any degrees of universality. Interestingly, the early-time

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 129, 011602 (2022)

0031-9007=22=129(1)=011602(7) 011602-1 Published by the American Physical Society

https://orcid.org/0000-0001-9392-7507
https://orcid.org/0000-0003-3124-5281
https://orcid.org/0000-0002-0493-3153
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.129.011602&domain=pdf&date_stamp=2022-06-27
https://doi.org/10.1103/PhysRevLett.129.011602
https://doi.org/10.1103/PhysRevLett.129.011602
https://doi.org/10.1103/PhysRevLett.129.011602
https://doi.org/10.1103/PhysRevLett.129.011602
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


dynamics of the quark-gluon plasma (QGP), the most
perfect fluid in nature [15,16] is characterized by large
spatial gradients [17]. Its far-from-equilibrium nature [18]
renders the applicability of hydrodynamics questionable
(see Refs. [19,20] for reviews about the topic).
In recent years, there has been an incredible effort in

understanding whether hydrodynamics, and in which form
exactly, can be still useful and applicable to describe the
far-from-equilibrium dynamics of fluids [21–23], leading
to new ideas at the edge between math and physics, such as
resummed transport coefficients [24], hydrodynamics
attractors [25–27], resurgent transseries [28], and many
more. Holography [29–31] represents a very natural play-
ground to test and explore these ideas by performing
controllable computations of the real-time far-from-equi-
librium dynamics of strongly coupled fluids [21,32–43].
The current interpretation suggests that hydrodynamics

may still be defined as a universal attractor [44–48] and
that dissipative transport coefficients, such as viscosity, can
still show a universal behavior even when local gradients
are large and the system is far from equilibrium. Following
this paradigm, a natural question to ask is whether there is
any remnant of the universal KSS bound far from equi-
librium, i.e., for large shear rates. In particular, one would
like to understand whether the dimensionless viscosity-
entropy density ratio, when opportunely defined, remains
constant far from equilibrium and whether such a value
coincides or not with the KSS bound η0=s ¼ 1=4π (with
ℏ ¼ kB ¼ 1). Here, η0 is the value of the viscosity defined
within linear response in the hydrodynamic limit and
appearing as a first-order dissipative correction to the
stress-energy tensor Tab [49]. Importantly η0 is different
from η in Eq. (1) for large shear rates.
In this Letter, we consider the real-time dynamics of

several bottom-up holographic models under large
shear deformations, which correspond to large N strongly
coupled fluids far from equilibrium. By considering time-
dependent backgrounds with finite shear deformations, we
analyze the behavior of the viscosity under large gradients
and explore to which extent its universal character is
preserved when the system is driven far away from the
equilibrium state.
Shear flows, viscosity, and thermodynamics.—Near

equilibrium, where linearized hydrodynamics applies, the
viscosity can be extracted in terms of the stress tensor
retarded Green’s function using the standard Kubo
formula [50]:

η0 ¼ −lim
ω→0

1

ω
Im½GðRÞ

TxyTxy
ðωÞ�; ð2Þ

where, for simplicity, only two spatial dimensions ðx; yÞ are
considered. This procedure can be easily implemented in
the holographic formalism by considering an infinitesimal
gravitational shear perturbation δgxy ∼ e−iωt and computing

the linear retarded response of the dual stress tensor using
the holographic dictionary [51–53]. In general, whenever
the shear strain rate _γ is large, both the linear response
formalism and the hydrodynamics approximation are not
applicable anymore, and thus the Kubo formula in Eq. (2)
loses its meaning. In this situation, in which the gravita-
tional solution becomes inherently time dependent, a more
appropriate and robust way of proceeding is to compute
directly the time-dependent boundary stress tensor σ which
is now a nonlinear function of _γ, and apply the more general
formula presented in Eq. (1). As a result, the apparent
viscosity η is generally a function of both time and shear
rate, thus displaying a much richer dynamics than its near
equilibrium counterpart η0. This is the procedure that will
be adopted in this work.
In time-dependent holographic solutions, or equivalently

in field theories out of equilibrium, aside from the defi-
nition of the viscosity, one must be extremely careful with
the definitions of the thermodynamic quantities such as the
temperature and entropy [54–56]. The standard definition
of entropy, extracted using the Bekenstein-Hawking law
from the area of the black-hole event horizon [57], becomes
questionable. Nevertheless, there is increasing evidence
(see Ref. [58] for a detailed discussion on this point) that
the correct derivation of the entropy density in out-of-
equilibrium gravitational systems is through the area of the
apparent horizon that is defined using local quantities [59].
We will therefore follow this identification. Importantly,
because of the large N limit, the effects of hydrodynamic
fluctuations which are known to spoil the late-time behav-
ior of two dimensional fluids [60] are neglected in our
computations. We do expect the picture emerging from our
analysis to be, at least qualitatively, similar to that in higher
dimensions where the effects of fluctuations become
irrelevant.
Out-of-equilibrium steady states.—We consider three

different bottom-up models in asymptotically AdS4 space-
time. The first setup is the standard Einstein-Maxwell (EM)
action whose field theory dual represents a (2þ 1) dimen-
sional strongly coupled relativistic charged fluid with a
global U(1) symmetry [61]. The second framework contains
a different deformation which introduces a nontrivial elastic
bulk modulus in the neutral dual field theory (see Refs. [62–
67] for more details). Finally, in the third one, conformal
symmetry is explicitly broken by a scalar deformation, and
the corresponding boundary stress tensor is no longer
traceless [68].Near equilibrium (in the hydrodynamic limit),
all the dual fluid field theories considered display a universal
value for the viscosity-to-entropy density ratio which
saturates the KSS bound η0=s ¼ 1=4π. All the additional
details about the models can be found in the Supplemental
Material [69].
In order to drive our holographic systems far from

equilibrium, we introduce a time-dependent source for
the metric component gxy. From the dual field theory point
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of view, that corresponds to deforming our fluid with a
time-dependent shear strain γðtÞ. In the main text, we will
focus on the EM model and two benchmark shear rates.
Different holographic models (including a nonconformal
one) and different shear strain deformations are discussed
in the Supplemental Material [69] and give equivalent
results. We construct numerically the far-from-equilibrium
geometry which allows us to read all the physical observ-
ables of the dual field theory. Importantly, because the
boundary field theory geometry is not of Minkowski type,
extra care needs to be taken in order to define the boundary
shear stress σðtÞ and the shear strain γðtÞ. All the details of
our computations can be found in the Supplemental
Material [69].
Let us first consider the EM model in the presence of a

constant shear rate _γ ≡ γ0. The time-dependent dynamics
(see Fig. SI1 in the Supplemental Material [69]) strongly
depends on the dimensionless shear rate Γ0 ≡ γ0=

ffiffiffi
ρ

p
,

where ρ is the charge density of the dual field theory.
For small Γ0, the time evolution is slow, and all quantities
slowly grow in time. Whenever the gradients are large, all
quantities rapidly increase and deviate from their initial
values. The viscosity and the entropy density grow quad-
ratically in time ∼t2 while the energy density grows like
∼t3. More in general, we find that, independently of the
shear deformation used, the behavior of the energy density
is constrained by one of the Einstein’s equations as follows:

EðtÞ − Eini ¼
Z

t

tini

_γðτÞσðτÞdτ ¼
Z

t

tini

ηðτÞ_γðτÞ2dτ; ð3Þ

from which the cubic scaling mentioned above can be
immediately derived. Here, the subscript ini refers to the
initial configuration on top of which the shear deformation
is switched on. Equation (3), which is obtained analytically
from the gravitational setup (see the Supplemental Material
[69]), corresponds exactly to the expression for the dis-
sipated energy in a viscoelastic system under deformations
[70]. Let us emphasize that, in order to avoid infinite
gradients during the introduction of the constant strain rate,

the time-dependent boundary strain γðtÞ presents an initial
activation window which is responsible for the nonmono-
tonic oscillations observed in all our results at early time.
We explicitly checked that the form of the activation
function does not affect our results.
From a physical perspective, we can notice that the

apparent viscosity η grows with the shear rate Γ0. In the
context of rheology, this behavior is denoted as shear
thickening, and it is typical of dilatant fluids, such as blood,
ketchup, and peanut butter. These results are compatible
with those of Ref. [71], found using oscillatory strain
methods.
The dynamics of the two dimensionless ratios E=S3=2,

η=S, with S the entropy density, is shown in Fig. 1. The
time evolution profiles present a transient regime which is
highly sensitive to the initial conditions and to the rate of
shear deformation Γ0. In that window, none of the quan-
tities seem to follow any specific trend, and the UV
microscopic details are dominating the dynamics. The
deviations from the initial value can reach up to 50%
and are larger by increasing the rate of deformation Γ0.
Moreover, the viscosity-to-entropy density ratio clearly
violates the KSS bound in agreement with the results of
Ref. [72]. Nevertheless, after a certain time, which we label
as the attracting time (see below for a more formal
definition), we observe that both quantities approach a
constant value which is given exactly by the close-to-
equilibrium hydrodynamics expectations. The same uni-
versal behavior is observed in the other holographic models
considered and, surprisingly, also for a nonconformal
model (see the Supplemental Material [69]) and for
deformations with a nonconstant shear rate such as γðtÞ ∼ffiffi
t

p
; t2; t4 (see Supplemental Material [69]).
To continue, let us define the attracting time tattr as the

value at which the dimensionless quantities reach their final
late-time values. Pragmatically, we decided to use two
different criteria coinciding with 98% and the 98.5% of the
final values. We show this quantity for both the viscosity
and the entropy density as a function of the normalized
shear rate in the right panel of Fig. 1. Interestingly, we find

FIG. 1. Left: E=S3=2 as a function of γðtÞ, where the dash line is 1=ð2πÞ3=2. Center: η=S as a function of γðtÞ, where the dash line is
1=4π. Right: The dimensionless attracting times, defined using the 1.5% and 2% rules, for both the viscosity and energy density ratios as
a function of the normalized shear rate.
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that the larger the shear rate, the faster the time evolution

reaches the universal attractor.
In order to understand this emerging universality, in

Fig. 2, we plot the dimensionless ratio between the shear
rate and the energy density of the system. We find that for
large deformations γ ≫ 1, such a ratio goes to zero
following a universal law _γ=E1=3 ¼ 2π=γ. This numerical
observation implies the existence of a universal attractor
solution in the regime γðtÞ ¼ γ0t ≫ 1 given by

E ¼
�
γ0
2π

�
3

γ3; η ¼ γ20
2ð2πÞ2 γ

2; S ¼ γ20
2π

γ2; ð4Þ

which is consistent with the data presented in Fig. 1.

Note that, in far-from-equilibrium systems, a local rest
frame might be absent [73]. In all the cases considered, a
local rest frame exists (see the Supplemental Material [69])
and therefore the notion of hydrodynamic attractor is
always well defined [73].
A far-from-equilibrium case.—In the setups considered

so far, the shear rate in units of the characteristic energy
scale of the system becomes small at late time (see top
panel of Fig. 2). This suggests the presence of a late-time
steady state which is effectively in equilibrium. Therefore,
it is perhaps not surprising that the near equilibrium
hydrodynamic results apply in these situations.
By considering a different time-dependent shear rate (see

details in the Supplemental Material [69]), we are able to
keep the energy-normalized shear rate fixed, and arbitrarily
large, at late time. In this case, the system never reaches an
effective equilibrium state in which all physical quantities

FIG. 2. Top: The dimensionless combination _γ=E1=3 as a
function of γ for different shear rates. The dashed line is the
attractor function 2π=γ approached by all curves for γ ≫ 1.
Bottom: The pressure anisotropy σ=P as a function of γðtÞ for
constant Γ0 ¼ 1 (blue) and at constant _γ=E1=3 ¼ 1 (red) in the
EM model.

FIG. 3. The out-of-equilibrium steady state. Top: η=s as a
function of γ for different values of the dimensionless gradient
_γ=E1=3. Bottom: The value of the η=s ratio at late time as a
function of the dimensionless shear rate _γ=E1=3.
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are time dependent but the gradients are small compared
with the characteristic energy scale. This distinction
is confirmed by the analysis of the pressure anisotropy
ΔP ≡ σ=P at late time, γ → ∞ (bottom panel of Fig. 2).
Whether for the previous cases (blue curve) ΔP → 0 at late
times, in this new setup (red curve) it approaches an Oð1Þ
constant signaling the far-from-equilibrium nature of the
late-time state. Interestingly, even in this far-from-equilib-
rium situation, both the viscosity-to-entropy ratio and the
dimensionless energy density approach a constant value in
the late-time steady state, as shown in the top panel of
Fig. 3. Nevertheless, this value does not coincide anymore
with the near-equilibrium expectation, e.g., 1=4π for the
viscosity. On the contrary, as shown in the bottom panel of
Fig. 3, the out-of-equilibrium value for η=S decays mono-
tonically with the strength of the shear gradient and seems
to approach zero for extremely large values of the shear
rate. This indicates that, even far from equilibrium, the
system is described by an effective hydrodynamic steady
state whose transport properties are nevertheless parametri-
cally different with respect to its near-equilibrium counter-
part. Our results are consistent with the findings of
Ref. [74] for the highly symmetric Bjorken flow in which
the viscosity out of equilibrium was found to be para-
metrically smaller than the equilibrium value.
Outlook.—In summary, we have performed an extensive

time-dependent numerical analysis of several bottom-up
(conformal and not) holographic models driven away from
equilibrium by different shear rates. Whenever the shear
rate in units of the energy density becomes small at late
time, our results reveal the emergence of a universal
attracting behavior, encoded in the simple solution
[Eq. (4)], on which both the dimensionless viscosity-
entropy and energy-entropy ratios reach a constant
value which coincides exactly with the prediction of
hydrodynamics naively valid only near equilibrium.
Importantly, we prove that this behavior also persists when
conformal symmetry is abandoned (see, e.g., Refs. [74–76]
for similar discussions).
In the second scenario, in which the shear rate is kept

constant and large in units of the energy density, we still
observe a late-time steady state on which the η=S ratio
takes a constant value. Nevertheless, we find that such a
value does not coincide anymore with the near-equilibrium
hydrodynamic result 1=4π, but it rather decreases mono-
tonically with the strength of the gradients, becoming
parametrically smaller than the KSS bound.
Our results provide another case in favor of “the

unreasonable effectiveness” [77,78] of a nonlinearly renor-
malized version of hydrodynamics out of equilibrium and
might have important consequences not only on the out-of-
equilibrium dynamics in heavy-ion collisions and QGP
[20,23,79,80] but also on the understanding and charac-
terization of the rheological response of complex fluids
[65,71,81] using the holographic tool [82]. As a road map

for the future, it would be interesting to understand whether
the existence of the observed far-from-equilibrium steady
states is universal and whether the corresponding transport
properties can be related (probably in a highly nonlocal
way) to the near equilibrium counterparts (e.g., by promot-
ing the transport coefficients to be nonlinear functions of
the deformations or by resumming the nonlinear effects).
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