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We demonstrate, via numerical simulations, that the relaxation dynamics of supercooled liquids
correlates well with a plastic length scale measuring a particle’s response to impulsive localized
perturbations and weakly to measures of local elasticity. We find that the particle averaged plastic length
scale vanishes linearly in temperature and controls the super-Arrhenius temperature dependence of the
relaxation time. Furthermore, we show that the plastic length scale of individual particles correlates with
their typical displacement at the relaxation time. In contrast, the local elastic response only correlates with
the dynamics on the vibrational timescale.
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When supercooled, liquids develop a slow relaxation
dynamics [1–3] that proceeds through a sequence of
activated events [4]. These relaxation events occur in
preferential locations fixed by the particle configuration
[5], rather than randomly in space. Furthermore, these
events cluster in space and propagate through a facilitation
mechanism [6–8], making the dynamics spatially hetero-
geneous on the relaxation timescale [1–3,9–12]. It is
currently unclear what features of a particle configuration
identify the regions where relaxation events occur with
higher probability.
Previous works suggested that the local structure sur-

rounding each particle determines its possible involvement
in irreversible relaxation events and analyzed this structure
introducing physically motivated structural parameters
[13,13–18] or via machine learning approaches [19,20].
These structural parameters are system dependent as
affected, e.g., by the particles’ shape. Alternatively, local
elastic, rather than geometric, properties may have predic-
tive ability, if the established correlation [21–23] between
macroscopic elastic properties and relaxation dynamics also
holds at the microscopic scale. Considered measures of
local elasticity include the Debye-Waller factor (DWF), its
harmonic approximation, and parameters probing particles’
vibrational motion [9,24–27]. However, the correlation of a
particle’s local elastic properties with its involvement in
local relaxation processes is debated. Indeed, a particle’s
vibrational amplitude correlates highly with its short-time
displacement [9] but weaklywith its displacement evaluated
at the relaxation timescale [15]. In addition, correlations

between local elastic vibrations and plastic relaxation events
entail nonobvious assumptions [28] on the shape of the free
energy basin the system is transiently confined.
The response of individual particles to externally applied

forces is an alternative approach to characterize local
mechanical properties. The response to small forces, which
probes the linear elastic regime, revealed the spatial hetero-
geneity of the local elastic moduli in metallic glasses [29]
and dense colloidal suspensions [30]. Larger forces induce
plastic flow and allow for microrheology investigations
[31–34]. Recently, the response to transient applied forces
has been used to probe the emergence of caging in colloidal
suspensions [35] and energy absorption in soft colloids
[36,37].
In this Letter, we demonstrate that the plastic response

induced by transient localized perturbations defines a length
ξ that correlates with the relaxation dynamics at the macro-
scopic and the individual particle level. The average plastic
length vanishes linearly with the temperature and regulates
the super-Arrhenius divergence of the relaxation time,
τ ¼ τ0 expðξ0=ξÞ. A particle’s local plastic response corre-
lates with its typical displacement at the relaxation time. On
the contrary, the local elastic response only correlates with a
particle’s displacement at shorter times, on the vibrational
timescale. Our findings demonstrate that structural relaxa-
tion proceeds via local rearrangements that are weakly
related to the local elastic response, but well connected to
the local plastic response induced by transient perturbations.
We consider the Kob-Andersen [38,39], 65(A):35(B)

binary Lennard-Jones mixture ofN ¼ 2000 particles in two
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spatial dimensions. The interaction potential is UαβðrÞ ¼
4ϵαβ½ðσαβ=rÞ12 − ðσαβ=rÞ6 þ Cαβ� for r ≤ rcαβ ¼ 2.5σαβ and
UαβðrÞ¼0 otherwise, α;β∈fA;Bg. We set σAB=σAA ¼ 0.8,
σBB=σAA ¼ 0.88, ϵAB=ϵAA ¼ 1.5, ϵBB=ϵAA ¼ 0.5, and fix
Cαβ so that the potential vanishes continuously at the cutoff.
Length, energy, and time are recorded in units of σAA, ϵAA,
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2AA=ϵAA

p
, respectively. We perform Langevin

dynamics simulations using LAMMPS [40], numerically inte-
grating the equations of motion,mr̈i¼−∇i

P
jð≠iÞUαβðrijÞ−

γ_riþηiðtÞ, where ri is the position of the ith particle, rij is
the interparticle distance, and γ ¼ 1 is the friction coef-
ficient. ηi is a random noise, satisfying hηiðtÞηjðt0Þi ¼
2kBTγδijδt−t01, with 1 the unit tensor. This model has been
shown to be a good glass former [39], the relaxation time
developing a super-Arrhenius temperature dependence
below the onset temperature Tonset ¼ 0.7 [41,42], for
number density ρ ¼ 1.2. We recap the main features of
the relaxation dynamics of this model in the Supplemental
Material [42].
We probe the local mechanical response by exerting to a

particle i of an equilibrium configuration a force of
magnitude f and random orientation in the time interval
0 < t < tp, mimicking recent experimental studies [30,35–
37]. The response of the system depends on f, tp, and the
damping parameter γ. In the following, we concentrate on
the f dependence of the response at fixed γ ¼ 1 and tp ¼
0.1 corresponding to ≈1=10 of the vibrational timescale. In
the Supplemental Material [42], we show that results are
robust with respect to changes in γ and tp as long as the
perturbation triggers an irreversible response.
We illustrate in Fig. 1(a) the time dependence of the

displacement ΔxðtÞ ¼ hΔxiðtobsÞiθ;Nr;c induced by a local
force of magnitude f. The displacement is averaged over
160 forces differing in their random orientation θ for each
particle, and then further averaged over Nr ¼ 200 ran-
domly selected particles and c ¼ 8 independent configu-
rations. The displacement attains a constant value L for a
transient, which approximately ends when the mean-square
displacement becomes of order L2. Below the onset
temperature, this transient begins at t ≃ 2 × 102, corre-
sponding to roughly tobs ≃ 200 vibrational times.
The time dependence of the displacement informs on the

elastic properties of the systems. Indeed, in a viscous
medium, the displacement induced by a transient localized
force increases monotonically and saturates to a plateau
value, L ∝ f. In Fig. 1(a), where dashed lines mark the
value of L, we observe this behavior at the largest of the
considered temperatures. In contrast, in a viscoplastic
medium, the displacement reaches a maximum and then
saturates to a smaller L value, as we observe at the other
considered temperatures. In the presence of a purely elastic
response, the final displacement L would vanish.
Themagnitude of the average force-induced displacement

LðT; fÞ (see Fig. S4 in the Supplemental Material [42]

for the distribution of the individual particle displacements)
depends on the applied force and temperature. Below the
onset temperature, the asymptotic displacement increases
linearly with the temperature LðT; fÞ ∝ ðT − T0Þ and with
the applied force L ∝ ðf − f0Þ, as illustrated in Figs. 1(b)
and 1(c). Here, T0 ≃ 0.12 and f0 is a temperature-
independent threshold value. This scaling does not hold at

FIG. 1. (a) Time dependence of the average displacement of a
particle in response to a force acting on the time window
identified by the shaded region. The dashed lines mark the
asymptotic displacement values LðT; fÞ. The filled red stars mark
the ΔxðτCRÞ for T ≥ 0.5. (b) The asymptotic displacement grows
linearly in temperature below the onset temperature marked by
the vertical dashed line, L ∝ ðT − T0Þ. (c) A plot of AðfÞ ¼
LðT; fÞ=ðT − T0Þ reveals that, below the onset temperature, the
asymptotic displacement grows linearly in f for large enough
forces.
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higher temperatures (see Fig. S3 [42]), and indeed, a small
deviation already occurs at the onset temperature in Fig. 1(c).
The need of applying a minimum force to induce irreversible
particle motion is consistent with previous results [34].
To rationalize the force dependence of L, we investigate

the response to the application of localized forces of systems
brought in energy minima in the Supplemental Material
[42]. This investigation suggests that the temperature
independence of f0 reflects the weak dependence of the
energy landscape on the temperature of the parent liquid, in
the supercooled regime, and that L has a linear dependence
on f as it results from the accumulation of nðfÞ ∝ ðf − f0Þ
plastic displacements of typical size hli [42].
Summarizing, Fig. 1 shows that, in the regime of low

temperature and forces large enough to trigger plastic
rearrangements, the force-induced displacement varies as
LðT; fÞ ¼ ξðTÞð1 − f=f0Þ, with ξðTÞ ∝ ðT − T0Þ a tem-
perature-dependent length scale. Next, we show that this
plastic length regulates the relaxation dynamics.
We probe the relaxation dynamics using cage-relative

(CR) measures to filter out the influence of long-wave-
length fluctuations [41,43–46] that lead to an underesti-
mation of the structural relaxation time in two spatial
dimensions. While standard relaxation measures focus on
the actual displacement of each particle, CRmeasures focus
on the displacement of a particle with respect to the average
displacement of its neighbors, which we identify via the
Voronoi construction. This definition makes CR measures
unaffected by the collective translations that characterize
long-wavelength fluctuations.
We estimate the CR relaxation time τCRðTÞ, which is

proportional to the shear viscosity [41,47], from the decay
of the CR self-scattering function evaluated at the wave
vector corresponding to the first peak of the structure factor.
Figure 2 illustrates that, below the onset temperature, the
CR relaxation time grows exponentially with the inverse
plastic length scale ξðTÞ,

τCRðTÞ ¼ τ0 exp

�
ξ0

ξðTÞ
�
; ð1Þ

with τ0 a microscopic vibrational timescale and ξ0 a
constant. Given that ξ ∝ ðT − T0Þ, Eq. (1) corresponds
to a Vogel-Fulcher-Tammann (VFT) dependence of the
relaxation time on temperature, which we illustrate in Fig.
S2 of the Supplemental Material [42].
We stress that other functional forms may describe the

super-Arrhenius temperature dependence of the relaxa-
tion time. As such, we do not want to give funda-
mental significance to the fitting parameters. Yet, since
τ¼τ0expðΔF=TÞ, where ΔFðTÞ is the free energy barrier
of the elementary relaxation events, our finding demon-
strates a connection between the plastic length scale ξðTÞ
and ΔFðTÞ, i.e., ΔF ∝ 1=ξ. This is our first main result.

AVFT-like divergence of the relaxation time is predicted
by entropic theories of the glass transition, such as the early
Adam-Gibbs [48] scenario and the subsequent random
first-order transition theory [49]. According to these the-
ories, the super-Arrhenius dynamics follows from the
vanishing of the configurational entropy or, equivalently,
from the divergence of a static length that measures the size
of loosely defined cooperative rearranging regions [50,51].
Previous works supported the existence of a growing static
length on cooling [11,13,18,52–55]. These theories are
consistent with our results only if the dynamical slowdown
involves both a decreasing and an increasing length scale.
This scenario may occur if relaxation events have a core-
corona structure, with the core and corona size respectively
decreasing and increasing on cooling. In this respect, we
remark that particles undergoing large displacements in a
relaxation event become increasingly localized [56,57] on
cooling.
Elastic models of the glass transitions [21,58] relate ΔF

to a vanishing length scale, the DWF, e.g., ΔF ∝ 1=hu2iα=2
with α a phenomenological parameter describing cage
anisotropy [23,59] or related functional forms [22,24].
While both ξ and hu2i decrease on cooling, these lengths
are conceptually different. ξ relates to the plastic response
and it appears to vanish at a finite temperature. In contrast,
hu2i probes the elastic, possibly anharmonic, vibrational
motion and only vanishes at zero temperature. Indeed, to
recover a super-Arrhenius behavior, earlier works [24]
suggested the relaxation time relates to the difference
between hu2i and its expected crystalline value.
We now turn our attention to the spatial and temporal

heterogeneity of the relaxation dynamics [1–3], which we
quantify by resorting to the CR mean-square displacement
in the isoconfigurational ensemble [5]. We evaluate
hΔr2i;CRðtÞiiso by averaging the mean-square displacement
of each particle over 128 equilibrium simulations sharing

FIG. 2. The cage-relative relaxation time grows exponentially
with the reciprocal plastic length 1=ξðTÞ¼ð1−f=f0Þð1−T=T0Þ=
LðT;fÞ. Data refer to ρ ¼ 1.2.
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the same initial particle configuration and differing in the
particles’ momenta, we randomly sample from the rele-
vant equilibrium distribution. Particles with a large
hΔr2i;CRðtÞiiso at the relaxation time identify the locations
more prone to structural rearrangements [5,9].
We investigate the correlations between hΔr2i;CRðtÞiiso

and a local plastic length scale ξi ¼ hΔxiðtobsÞiθ, which we
define as the displacement induced by the application of a
randomly oriented force of magnitude f ¼ 140 on particle
i, averaged over 200 realizations. To compare with previous
works [6,9,15], we also investigate how hΔr2i;CRðtÞiiso
correlates with the CR-DWF hu2i i ¼ hΔr2i;CRðτβÞiiso, the
mode participation pi [9], and the harmonic mean-square
displacement ψ i [15]. Here τβ is the time at which the
logarithmic derivative of the mean-square displacement
acquires its minimum, implying that the system is max-
imally subdiffusive [22]. To evaluate p and ψ , we diag-
onalize the Hessian matrix of the disordered solid obtained
by minimizing the energy of the t ¼ 0 configuration via the
TINKER package [60], obtaining 2N − 2 eigenmodes eðωaÞ
with nonzero eigenfrequencies ωa. We define the partici-
pation fraction of particle i as pi ¼ hjeiðωjÞj2iNm

, where j
runs over the Nm ¼ 50 modes with lowest nonzero fre-
quency. The mean-square displacement in the harmonic
approximation is ψ i ¼

P
a ω

−2
a jeiðωaÞj2. At each time t,

we resort to Spearman’s rank correlation coefficient SðtÞ
[11,61–63] to evaluate how hΔr2CRðtÞiiso correlates to each
of the different considered static quantities. S ¼ 1 (−1) for
monotonically increasing (decreasing) dependence of two
quantities, while S ¼ 0 in the absence of correlations.
Figure 3 illustrates (right axis) the time evolution of the

average CR mean-square displacement at ρ ¼ 1.2 and
T ¼ 0.4, and (left axis) the time evolution of Spearman’s
rank correlation coefficients. By definition, hΔr2i;CRðtÞiiso
and hu2i i are perfectly correlated at t¼τβ (τβ ≃ 3 × 10−4τCR
at ρ ¼ 1.2 and T ¼ 0.4). Figure 3 clarifies that the
correlation sharply drops at longer times [15], equaling
≃0.1 at the relaxation timescale. Similarly, the correlation
between hΔr2i;CRðtÞiiso and both participation fraction and
mean-square displacement in the harmonic approximation
reaches a maximum at short times and sensibly drops on the
relaxation timescale.
These results agree with previous investigations [9] on

the relation between isoconfigurational mean-square dis-
placement and participation fraction, that found correla-
tions at t ≃ 0.3τ, with τ the relaxation time evaluated
without resorting to CR measures [64]. Indeed, for the
system considered in Fig. 3, t ¼ 0.3τ corresponds to
t ≃ 0.1τCR, a short time where the dynamics is still
dominated by the vibrational motion. The critical conclu-
sion we reach from this investigation is that participation
fraction and DWF correlate well with the vibrational
dynamics but weakly with the dynamics on the relaxation
timescale. Henceforth, these quantities are not a good proxy
for the location of the relaxation events.

In Fig. 3, we also illustrate Spearman’s rank correlation
coefficient between hΔr2i;CRðtÞiiso and the plastic length
scale ξi. This correlation coefficient is small at short times
and reaches a maximum at the relaxation time. Hence, it
critically differs from the other correlation coefficients we
have investigated that peak on the vibrational timescale.
These findings demonstrate that the plastic length scale is a
robust indicator of the relaxation dynamics at the particle
level. This result is our second significant result.
To further test the validity of our results, we have

replaced hΔr2i;CRðtÞiiso with alternative measures of struc-
tural relaxation, a particle-based self-scattering function
and the fraction of neighbors the particle has lost at time t.
Figure S11 in [42] shows that our findings are robust with
respect to the adopted definition of local structural relax-
ation. In addition, in the Supplemental Material we show
that the average plastic length scale correlates with the
relaxation time, and the locally defined plastic length scale
identifies the particles more prone to rearrange, also when
the dynamical slowdown is induced by an increase of the
density at a constant temperature. These investigations
support the robustness of our findings and clarify that our
predictions could be experimentally tested in suspensions
of colloidal particles [30,35–37], where density is the main
control parameter.
Our results show that the response of individual particles

to transient, almost impulsive perturbations defines a
plastic correlation length that regulates supercooled liquids’
relaxation dynamics. The average plastic correlation length
ξ is inversely proportional to the free energy barrier ΔFðTÞ
governing the dynamic slowdown. The plastic response of
individual particles informs on their participation in
localized relaxation events and hence on the spatial

FIG. 3. Time dependence of Spearman’s rank correlation
coefficient S between the CR mean-square displacement of the
particles at time t and (1) their CR mean-square displacement at
t ¼ τβ, (2) their participation fraction p, (3) their mean-square
displacement evaluated in the harmonic approximation, and
(4) their plastic length scale ξ. The blue dashed line represents
the average CR mean-square displacement.
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heterogeneity of the relaxation process at the relaxation
timescale. Our findings provide novel insights into the
origin of slow and heterogeneous dynamics, showing
that the local elastic response mostly correlates with the
vibrational dynamics rather than with the dynamics at the
relaxation time. Our results may inspire novel glass
transition theories and stimulate experimental research
on the plastic response to external forces induced, e.g.,
by laser pulses.
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