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We study a class of temporal metamaterials characterized by time-varying dielectric permittivity
waveforms of duration much smaller than the characteristic wave-dynamical timescale. In the analogy
between spatial and temporal metamaterials, such a short-pulsed regime can be viewed as the temporal
counterpart of metasurfaces. We introduce a general and compact analytical formalism for modeling the
interaction of a short-pulsed metamaterial with an electromagnetic wave packet. Specifically, we elucidate
the role of local and nonlocal effects, as well as the time-reversal symmetry breaking, and we show how
they can be harnessed to perform elementary analog computing, such as first and second derivatives. Our
theory validated against full-wave numerical simulations suggests a novel route for manipulating
electromagnetic waves without relying on long, periodic temporal modulations. Just as metasurfaces
have played a pivotal role in the technological viability and practical applicability of conventional (spatial)
metamaterials, short-pulsed metamaterials may catalyze the development of temporal and space-time
metamaterials.
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Conventional metamaterials and metasurfaces are artifi-
cial structures relying on suitably designed spatial arrange-
ments (volumetric and planar, respectively) of deeply
subwavelength meta-atoms that are engineered so as to
attain desired physical responses not necessarily found in
natural materials [1]. Currently, the growing availability of
reconfigurable meta-atoms, whose response can be rapidly
changed in time, has granted access to the temporal
dimension as well, and has revamped the interest in studying
wave interactions with time-varying media [2–4] within the
emerging frameworks of “temporal” and “space-time”
metamaterials [5–7].
With specific reference to optics and photonics, by relying

on the space-time duality, a variety of concepts and tools
typically utilized in spatially variant configurations have
been translated to time-varying scenarios, starting from
simple counterparts such as temporal boundaries [8] and
slabs [9,10], and moving to more sophisticated aspects such
as Brewster angle [11], Faraday rotation [12], diffraction
gratings [13,14], effective-medium theory [15,16] and
related nonlocal corrections [17,18], transfer-matrix model-
ing [19,20], impedance transformers [21,22] and filters [23],
just to mention a few. The reader is referred to Ref. [24] (and
references therein) for a recent comprehensive review.
Typical temporal metamaterials based on periodic tem-

poral modulations of the dielectric permittivity can be
viewed as the analog of spatial, volumetric multilayered
metamaterials and, under appropriate conditions, can be
likewise homogenized [15]. Looking at the evolution of
conventional (spatial) metamaterials, the surge of lower-
dimensional implementations (metasurfaces) has played a

pivotal role in determining the technological viability and
improving the efficiency and integrability in scenarios of
practical interest, and arguably constitutes one of the most
promising research directions [25]. Based on the space-
time analogy mentioned above, one might wonder to what
extent a similar path may be followed in the temporal case
as well; this implies moving from periodic temporal
modulations to pulsed variations much shorter than the
characteristic wave-dynamical timescale.
Although some general scenarios of temporally resolved

modulations have been studied [9,10], such a short-pulsed
metamaterial (SPM) regime remains largely unexplored,
and its systematic investigation motivates our study here.
To this aim, we develop a general theory to model the
interaction of an electromagnetic (EM) wave packet with an
arbitrary SPM. Via a multiscale asymptotic analysis, we
derive a compact formalism that elucidates the role of the
time-reversal symmetry breaking and local or nonlocal
effects in the SPM regime. In addition, we show how these
effects can be harnessed to synthesize some elementary
analog-computing functionalities.
As schematically illustrated in Fig. 1, we consider an EM

wave packet (with characteristic timescale Δt) propagating
in a spatially unbounded, nonmagnetic, temporal meta-
material described by a time-varying relative dielectric
permittivity

εðtÞ ¼
8<
:

ε1; t < 0;

εpðtÞ; 0 < t < τ;

ε2; t > τ;

ð1Þ
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where ε1 and ε2 are constant in time, whereas εpðtÞ is a
pulsed waveform of duration τ ≪ Δt, consistent with our
SPM definition. As in previous studies of temporal
metamaterials [15], we assume to operate far away from
any material resonance frequencies, and therefore, we
neglect temporal dispersion [2,26]. Moreover, we gener-
ally assume that the EM field can experience a so-called
“temporal boundary” [8] at which the dielectric permit-
tivity (uniform in space) changes abruptly everywhere at
a specific time instant tb. Specifically, we consider a
discontinuous behavior at tb ¼ 0, τ; while this idealization
is clearly unphysical, our results remain valid as long
as the rising or falling times are much shorter than the
duration τ (see further details on full-wave simulations
in Ref. [27]). The dynamics of the electric induction
field D is governed by the vector wave equation
∂
2
ttD − c2ε−1ðtÞ∇2D ¼ 0, with c denoting the wave speed
in vacuum. In analogy with conventional spatially modu-
lated metamaterials (where the inclusions size is much
smaller than the EM wavelength) [28–31], we introduce
the small positive parameter η ¼ τ=Δt ≪ 1, and the fast
coordinate T ¼ t=η (regarded as independent from the
slow one t) in order to isolate the slowly and rapidly
varying field contributions [32]. To ensure finite results in
the asymptotic limit η → 0, the basic ansatz of our
multiscale approach is [30] (see also Ref. [27] for details)

Dðr; tÞ ≃ D̄ðr; tÞ þ η2D̃ðr; t; TÞ: ð2Þ

Here and henceforth, the overline and tilde denote
the slowly and rapidly varying terms, respectively,
i.e., D̄ðr; tÞ ¼ τ̃−1

R
τ̃
0 Dðr; t; TÞdT (with τ̃ ¼ τ=η), and

D̃ ¼ η−2ðD − D̄Þ. Likewise, to separate the fast and slow
contributions in the wave equation, we can decompose the
(reciprocal of the) relative-permittivity pulsed waveform

as ε−1p ¼ ε−1p þ fε−1p ðTÞ [33]. By substituting the above
expressions in the vector wave equation for D, after
separating the slowly and rapidly varying contributions

and consistently retaining the terms up to the second order
in η, we obtain the equations [27]

∂
2D̄
∂t2

− c2∇2

�
ε−1effD̄ −

γ

K2
∇2D̄

�
¼ 0; ð3aÞ

D̃ ¼ −K−2fðTÞ∇2D̄ ð3bÞ

governing the slow and fast EM dynamics, respectively,
within the time interval 0 < t < τ. In Eqs. (3), we have

defined εeff ¼ ðε−1p Þ−1, K ¼ 2π=ðcτÞ, and γ ¼ η2fε−1p f, with
the function f satisfying the differential equation [27]

d2f
dT2

þ c2K2fε−1p ¼ 0 ð4Þ

subject to the boundary conditions f̄ ¼ 0 and ∂Tf ¼ 0,
which ensure the fulfilling of the self-consistency constraints
¯̃D ¼ 0 and ∂TD̃ ¼ 0, respectively, since D̃ and ∂TD̃ are
rapidly varying functions [27]. We observe that, even though
the physical setup is different, Eq. (3a) exhibits the same
formal structure encountered in the case of temporally
periodic metamaterials [18]. Also, in the SPM regime of
interest here, the wave-matter interaction is essentially
described by an effective relative permittivity [given by
the harmonic average of the waveform εpðtÞ, and accounting
for the local response] and a peculiar nonlocal contribution
[the term proportional to γ in Eq. (3a)]. Similar to conven-
tional spatially modulated metamaterials, the rapidly varying
contributions can affect the dynamics of the main slowly
varying field, yielding strong spatial dispersion and optical
magnetism [30].
To study the interaction of an impinging EM wave

packet with the SPM, as for canonical temporal boundaries
[8], we enforce the continuity of the microscopic electric
(D) and magnetic (B) inductions at the temporal boundaries
tb ¼ 0, τ. By considering plane-wave illumination
D ¼ 2Re½dðk; tÞeik·r� and B ¼ 2Re½bðk; tÞeik·r�, and
using Eqs. (3) together with the relevant Maxwell curl
equation, we obtain for the slowly varying terms at tb ¼ 0
and tb ¼ τ [27]

d̄out ¼
�
1þ α0

k2

K2

�
d̄in; ð5aÞ

b̄out ¼
�
1þ α0

k2

K2

�
b̄in − icμ0β0

k
K
× d̄in; ð5bÞ

where the labels in and out refer to the induction boundary
values inside (i.e., tb ¼ 0þ and τ−) and outside (i.e., tb ¼
0− and τþ) the interval, μ0 is the vacuum magnetic
permeability, and

α0ðtbÞ ¼ η2fðtb=ηÞ; β0ðtbÞ ¼ −
η

cK
dfðtb=ηÞ

dT
: ð6Þ

endinitial

ε1 ε2

......
t (time)0 τ

pulsed

εp(t)

wave packet

Δt

FIG. 1. Schematic of a short-pulsed metamaterial (details in the
text).
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Similar to the spatial counterpart (multilayered metamate-
rials), also in the temporal case the nonlocality affects the
interface conditions, and it is ruled by fundamental sym-
metries. A spatial multilayered metamaterial can exhibit
strong nonlocality and chiral boundary effects due to the
parity symmetry breaking [34]. In our scenario here, as any
time-varying medium, a SPM implies an inherent time-
reversal symmetry breaking. By comparison with the
conventional (unit-step) temporal-boundary conditions
[8] (i.e., the continuity of d, b at tb), it is evident that
the nonlocal terms in Eqs. (5) enhance the time-reversal
asymmetry. In particular, the term proportional to β0
explicitly breaks the time-reversal symmetry. It is worth
noting that similar and related effects have also been
observed in topological photonic crystals [35,36].
Consequently, by tailoring the dielectric pulse profile, it
is possible to tune the nonlocality and, in turn, the degree of
time-reversal symmetry breaking. This provides new
degrees of freedom and enables us to fully exploit the
time-reversal symmetry breaking for attaining unconven-
tional light-manipulation effects. In order to solve the
above boundary-value problem, we need to preliminarily
integrate Eq. (4), so as to compute the effective parameters
γ, α0, and β0. As detailed in Ref. [27], this can be addressed
systematically for a broad class of relative-permittivity
pulsed profiles satisfying the condition εpð0Þ ¼ εpðτÞ, for
which α0ð0Þ ¼ α0ðτÞ, β0ð0Þ ¼ β0ðτÞ, and therefore, a
Fourier-series parametrization can be effectively exploited,
along the lines of previous studies [37,38]. Under these
conditions, by solving Eqs. (3) with the temporal-boundary
conditions in Eqs. (5), we obtain the following asymptotic
approximation for the reflection (backward-wave) coeffi-
cient [27]:

rdðkÞ ≃
1

2

�
1 −

n2
n1

�
þ ip1

k
K
þ p2

k2

K2
; ð7Þ

where

p1 ¼ π

�
n2
εeff

−
1

n1

�
; ð8aÞ

p2 ¼ πβ0

�
n2
n1

þ 1

�
þ π2

εeff

�
n2
n1

− 1

�
ð8bÞ

with k ¼ jkj, nj ¼ ffiffiffiffi
εj

p (j ¼ 1, 2). Note that the result in
Eq. (7) is obtained in the asymptotic regime k=K ≪ 1 by
neglecting terms of order Oðk3=K3Þ. By recalling that, for
an impinging monochromatic wave with time dependence
exp ð−iω1tÞ, ω1 ¼ kc=

ffiffiffiffiffi
ε1

p
, and k=K ∼ ω1τ, this approxi-

mation is fully consistent with our SPM definition [27].
Likewise, a formally similar approximation can be derived
for the transmission (forward-wave) coefficient (see
Ref. [27] for details).

Equation (7) represents a key result of our study, which
clearly elucidates the role played by the local effects (i.e.,
constant term) and dominant nonlocal contributions (i.e.,
terms proportional to k and k2). Remarkably, it also
suggests simple strategies to tailor their interactions in
order to perform elementary wave-based analog comput-
ing, which is experiencing a renewed interest within the
framework of computational metastructures [39,40]. For
instance, nonlocal effects can be made dominant by
assuming the same initial and final media (ε1 ¼ ε2), so
that the constant (local) term vanishes. Under these con-
ditions, by recalling the derivative property of the Fourier
transform, it is apparent that the backward wave packet
contains a linear superposition of the first and second
spatial derivatives of the incident one. More specifically, we
can identify two parameter regimes of interest. The first one
is attained when

εeff ≠ ε2 ¼ ε1; ð9Þ

so that, in Eq. (7), the constant term vanishes and the
quadratic term is negligible, and thus, the backward wave
packet is proportional to the first-order derivative of the
incident one. The second regime corresponds to

εeff ¼ ε2 ¼ ε1; β0 ≠ 0; ð10Þ

i.e., the vanishing of both the constant and linear terms in
Eq. (7), thereby yielding the second-order derivative of the
incident wave packet. It is worth noting that the require-
ment β0 ≠ 0 implies that the boundary nonlocality plays a
key role in this latter scenario. In addition, we highlight that
the predicted effects are quite robust and not critically
dependent on a specific dielectric-permittivity pulsed
profile.
To illustrate the potential of SPMs, we consider several

examples in which the relative permittivity varies between
1 and 10. These values are consistent with our underlying
assumption of negligible temporal dispersion, and are
reasonably feasible in the microwave and terahertz ranges,
where high-refractive-index materials are available and can
be rapidly modulated in time. As an example, at terahertz
frequencies, by using an infrared femtosecond laser pulse,
the dielectric permittivity of a semiconductor (e.g., GaAs,
Si) slab can undergo a temporal modulation with significant
depth, on a timescale of ∼100 fs [41,42]. Therefore, a SPM
relying on such a platform should have a duration τ ≃
100 fs for manipulating a terahertz wave packet with a
characteristic timescale Δt ≃ 10τ ¼ 1 ps. Overall, the prac-
tical implementation of temporal metamaterials remains
very challenging from the technological viewpoint, espe-
cially at higher frequencies, although some notable
progress is being made (see, e.g., Ref. [24] for a recent
survey of experimental results).
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As a first illustration of SPM, we consider a rectangular
pulse, i.e., εpðtÞ ¼ ε3. For this particular profile (conven-
tional temporal slab), an exact closed-form solution is
available [9,27], not restricted to the SPM regime
τ=Δt ≪ 1. It is readily verified [27] that this exact result
consistently reduces to Eq. (7) (with εeff ¼ ε3 and β0 ¼ 0)
for k=K ≪ 1. Thus, such a SPM can perform the first
derivative in the parameter regime of Eq. (9), but not the
second derivative [cf. Eq. (10)], since the intrinsic non-
locality is absent (β0 ¼ 0).
Figure 2 illustrates some representative results, assuming

ε1 ¼ ε2 ¼ 1, ε3 ¼ 5, and an impinging Gaussian wave
packet with profile (for t < 0),

Dinðz; tÞ ¼ D0e
−½z−v1ðt−tsÞv1σt

�2 êx; ð11Þ

where D0 is a constant amplitude, êx is an x-directed unit
vector, σt a characteristic timescale, v1 ¼ c=

ffiffiffiffiffi
ε1

p
, and

ts ¼ −25σt. Specifically, Figs. 2(a) and 2(b) show the
space-time map and a spatial cut (at fixed time), respec-
tively, of the normalized electric induction field, for a
relative-permittivity rectangular profile (displayed in the
inset) with τ ¼ 2σt, i.e., not satisfying the SPM assumption

(see Ref. [27] for details). As a consequence [see Fig. 2(b)],
the agreement between our theory and the exact solution is
not good. Conversely, if the rectangular-pulse duration is
shortened to τ ¼ σt=2, as shown in Figs. 2(c) and 2(d), the
agreement becomes excellent, and the backward-wave
profile is proportional to the first-order derivative of the
incident wave packet. As previously mentioned, for this
configuration it is not possible to attain a second derivative.
As shown in Ref. [27], the forward (transmitted) wave
packet is instead dominated by local effects and remains
essentially identical to the impinging one. Quite interest-
ingly, this implies that an essentially undistorted copy of the
impinging signal is preserved and can be possibly exploited
for further processing.
As a second, more general example, we consider a

sinusoidal-pulse relative-permittivity waveform,

εpðtÞ ¼ εm

�
1þ Δ cos

�
2π

τ
tþ ϕ

��
; ð12Þ

which naturally satisfies the condition εpð0Þ ¼ εpðτÞ.
Figures 3(a) and 3(b) illustrate the interaction with the

Gaussian wave packet in Eq. (11), assuming ε1 ¼ ε2 ¼ 1,
εm ¼ 6.25, Δ ¼ 0.6, ϕ ¼ π, and τ ¼ σt=2. In this case, the
effective relative permittivity is εeff ≃ 5, and the considered
SPM behaves as the temporal slab in the previous example
[cf. Figs. 2(c) and 2(d)]. In both cases, the nonlocal
parameter β0 [and hence, the quadratic term in Eq. (7)]
vanishes. In fact, from Eqs. (3b) and (6), one can show that
this effect is general, since it stems from the time-reversal
symmetry of the relative-permittivity waveform
[εpðt − tbÞ ¼ εpðtb − tÞ]. For the profile in Eq. (12), no
exact solution is available, and therefore, we validate our
predictions against full-wave simulations (see Ref. [27] for

FIG. 2. Rectangular-pulse profile with εpðtÞ ¼ ε3 ¼ 5, ε1 ¼
ε2 ¼ 1 (temporal slab; see inset). (a) Space-time propagation of a
Gaussian wave packet (normalized electric induction) predicted
by the exact theory [9] for τ ¼ 2σt, with the orange-shaded area
representing the temporal slab. (b) Comparison between the
backward-wave profiles at time t� ¼ 5σt [Drðz; t�Þ] predicted by
the exact (blue solid) and SPM (orange dashed) theories. (c),(d)
Same as panels (a),(b), respectively, but for τ ¼ σt=2.

FIG. 3. Sinusoidal-pulse profile as in Eq. (12), with εm ¼ 6.25,
Δ ¼ 0.6, ϕ ¼ π, and ε1 ¼ ε2 ¼ 1 (see inset). (a) Space-time
propagation of a Gaussian wave packet (normalized electric
induction) predicted by the SPM theory for τ ¼ σt=2. (b) Com-
parison between the backward-wave profiles at time t� ¼ 5σt
[Drðz; t�Þ] predicted by full-wave simulations (blue solid) and
SPM theory (orange dashed).
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details). Figure 3(b) compares the electric-induction pro-
files of the backward (reflected) wave Drðz; t�Þ (at
t� ¼ 5σt) predicted by our SPM theory with the full-wave
numerical results for τ ¼ σt=2. As for the previous exam-
ple, the agreement is very good, and a first derivative is
attained. Also in this case, as expected, some visible
deviations are observed when the duration τ increases
(see Ref. [27] for details).
As stated above, by tailoring the relative-permittivity

pulsed waveform, we can also work in the second regime
described by Eqs. (10). This is illustrated in Fig. 4, where
we assume ε1 ¼ ε2 ¼ 5, εm ¼ 6.25, Δ ¼ 0.6, and
ϕ ¼ −π=2, which yield εeff ¼ ε1 ¼ ε2, β0 ≃ 0.13. In this
case, εbðtÞ does not exhibit even symmetry, so that β0 ≠ 0;
this additional breaking of the time-reversal symmetry
enables the computation of the second-order derivative,
as can be observed from Fig. 4(b). Once again, the
agreement between our theory and the full-wave simula-
tions is excellent in the SPM regime (e.g., τ ¼ σt=2), and
progressively deteriorates as τ increases (see Ref. [27] for
details).
In conclusion, we have studied the hitherto largely

unexplored short-pulsed regime in temporal metamaterials
corresponding to time variations of the dielectric permit-
tivity applied on intervals much shorter than the character-
istic wave-dynamical timescale. To this aim, we have
developed a general approximate theory based on a multi-
scale asymptotic approach, whose predictions agree very
well with full-wave numerical simulations and capture in
simple terms the relevant (non)local and symmetry-break-
ing effects that come into play. As possible application
examples of SPMs, we have illustrated their inherent wave-
based analog-computing capabilities, such as the compu-
tation of first and second derivatives on an impinging wave
packet. It is worth noting that similar computational
functionalities (first-order derivative) were also recently
observed in temporal metamaterials characterized by long
periodic modulations [18]. Our results here indicate that the
necessary nonlocal effects can be equivalently attained,

suitably harnessed, and possibly extended (second-order
derivative) also in the SPM regime. The possibility of
manipulating EM wave fronts with short-pulsed (rather
than long, periodic) temporal variations of the constitutive
parameters is conceptually analog to the “metasurface vs
metamaterial” juxtaposition in the spatial case, and should
be viewed as an elementary brick that opens up new
perspectives within the overarching framework of space-
time metastructures. Of particular interest for present and
future studies are the compound effects of multiple, time-
resolved SPMs (in analogy with cascaded metasurfaces
[43]), as well as the joint application of the SPM concept
and anisotropy [11,20,44,45]. Furthermore, the study of
traveling-wave short-pulsed modulations (e.g., along the
lines of Ref. [16]) also appears very intriguing. Finally, the
study of realistic platforms for experimental verification
remains crucial for enabling the technological viability of
the proposed approach.
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