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Despite major advances in the understanding of the formation and dynamics of nanoclusters in the past
decades, theoretical bases for the control of their shape are still lacking. We investigate strategies for driving
fluctuating few-particle clusters to an arbitrary target shape in minimum time with or without an external
field. This question is recast into a first passage problem, solved numerically, and discussed within a high
temperature expansion. Without field, large-enough low-energy target shapes exhibit an optimal temper-
ature at which they are reached in minimum time. We then compute the optimal way to set an external field
to minimize the time to reach the target, leading to a gain of time that grows when increasing cluster size or
decreasing temperature. This gain can shift the optimal temperature or even create one. Our results could
apply to clusters of atoms at equilibrium, and colloidal or nanoparticle clusters under thermo- or
electrophoresis.
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Less than a decade after its discovery [1], scanning
tunneling microscopy was used to position atoms on a
surface with Ånsgtrom precision [2], reaching atomic-scale
control on the organization of matter. Following this
seminal work, many examples of organization of atoms
[3,4], molecules or nanoparticles [5–9], and colloids
[10,11] were obtained with tools like scanning tunneling
microscopy, atomic force microscopy, or optical tweezers.
However, important challenges are still open in the control
of few-particle clusters.
The first one is to control matter at the nanoscale with an

external macroscopic field that does not act on one single
particle or atom at a time, but on the whole cluster. External
fields such as light acting on metal nanoparticle clusters
[12] or electromigration acting on atomic monolayer
clusters [13–16] are known to lead to complex equilibrium
or nonequilibrium cluster shapes. However, these shapes
are only a very small fraction of all possible shapes, which
are dictated by the physics of the interaction of the driving
force with the system.
Another challenge lies in the ability to obtain refined

control of nanostructure shapes in the presence of thermal
fluctuations that activate the random diffusion of particles
and atoms, leading to shape fluctuations [15,17,18]. Some
progress in this direction has been achieved with the control
of the formation and order of colloidal clusters [19–21] in
finite-temperature experiments. However, the control of the
cluster shape is still an open issue.
In order to address these challenges, we investigate

strategies to reach arbitrary cluster shapes in minimum
time in the presence of fluctuations. We focus on the control
of few-particle two-dimensional clusters and find how a
given target shape can be reached in minimum time with
and without macroscopic external field. This problem,

which is formulated as the minimization of a first passage
time on the graph of cluster configurations, is solved
numerically and studied analytically with the help of a
high temperature expansion.
In the absence of field, we find that large compact target

shapes exhibit an optimal temperature at which they can be
reached in minimum time. In the presence of an external
field we use dynamic programming [22,23] to find the
optimal way to set the external field as a function of the
cluster shape to reach the target in minimum time. The gain
in time due to the forces increases with decreasing temper-
ature and with increasing clusters size. This gain can shift
the optimal temperature, or create one when it does not
exist in the absence of forces.
We focus on clusters with edge diffusion dynamics. Edge

diffusion was observed in metal atomic monolayer islands
[24,25], and for colloids [26]. However, our strategy can
readily be extended to any type of dynamics that preserves
the number of particles such as surface-diffusion dynamics
inside vacancy clusters [27–29], or dislocation-mediated
cluster rearrangements in colloids [30] and metal nano-
clusters [31,32]. We discuss possible experiments with
clusters of atoms or colloids.
Model.—We consider a small cluster on a square lattice

with lattice parameter a and nearest-neighbor bonds J
under an external macroscopic force F. We assume that
the current configuration of the cluster, hereafter denoted
as the state s, can be observed at all times. The force is
chosen as a function of s. This choice is encoded in the
policy ϕ, so that F ¼ ϕðsÞ. The state s can change to
another state s0 via the motion of a single particle to
one of its nearest or next-nearest neighbor sites
along the cluster edge. Moves that break the cluster are
forbidden. Following usual models for biased diffusion
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[15,33,34], the hopping rate is assumed to take an
Arrhenius form

γϕðs; s0Þ ¼ ν expf−½nss0J − ϕðsÞ · uss0 �=kBTg; ð1Þ

where kBT is the thermal energy and ν is an attempt
frequency, nss0 is the number of in-plane nearest neighbors
in state s before hopping. To gain computation time, we
freeze atoms with nss0 ¼ 4. In addition, we assume that the
displacement vector to the diffusion saddle point uss0 is
half the displacement vector between the initial and final
positions of the moving atom [15]. In the following, we
choose units where kB ¼ 1, J ¼ 1, ν ¼ 1, and a ¼ 1.
Our goal is to study the time to reach a target cluster

configuration s̄ from an initial state s. This time can be seen
as a first passage time τϕðs; s̄Þ in a random walk on the
graph of cluster configurations [35,36], as represented in
Fig. 1. Since the dynamics is Markovian, τϕðs; s̄Þ is equal
to the expected residence time tϕðsÞ in state s plus the first
passage time from the new state s0 after the move [37].
Considering all possible moves, we obtain a recursion
relation

τϕðs; s̄Þ ¼ tϕðsÞ þ
X
s0∈Bs

pϕðs; s0Þτϕðs0; s̄Þ; ð2Þ

where pϕðs; s0Þ ¼ γϕðs; s0ÞtϕðsÞ is the transition probabil-
ity from s to s0, tϕðsÞ ¼ 1=

P
s0∈Bs

γϕðs; s0Þ, and Bs the set
of states that can be reached from s via a single move.

Relation Eq. (2) is supplemented with the boundary
condition τϕðs̄; s̄Þ ¼ 0.
We also define the expected return time to target, i.e.,

spent outside the target before returning to it when starting
from the target itself [38]

τrϕðs̄Þ ¼
X
s∈Bs̄

pϕðs̄; sÞτϕðs; s̄Þ: ð3Þ

For the sake of concision, we mainly focus on the analysis
of τrϕðs̄Þ instead of τϕðs; s̄Þ which is different for each s.
Zero force.—Let us first set the force to zero in all states,

ϕðsÞ ¼ 0. This leads to standard equilibrium fluctuation
dynamics that have been investigated thoroughly in the
case of edge diffusion [17,18,24]. Although some quan-
tities related to first passage processes have been discussed
within the frame of persistence of fluctuations [39,40],
there is to our knowledge no study of the first passage times
to cluster configurations. We have evaluated τϕðs; s̄Þ
numerically using the method of iterative evaluation
[22]: for a given s̄, we iterate the evaluation of τϕðs; s̄Þ
by substitution of its value in the right-hand side of Eq. (2).
Since it requires to list all states, such a method is suitable
for small clusters, which corresponds to our focus in this
Letter. Indeed, the total number SN of configurations for a
cluster with N particles, often called polyominoes or lattice
animals [41], grows exponentially with N: SN ∼ cλN=N,
with λ ≈ 4.0626 and c ≈ 0.3169 [42]. We have performed
simulations with N ≤ 12, with S12 ≈ 5 × 105 states.
The resulting expected return time to target with zero

force τr0ðs̄Þ is shown in Fig. 2 as a function of 1=T. For
small clusters, τr0ðs̄Þ increases monotonically as the temper-
ature is decreased. This is expected because thermally
activated hopping diffusion events become slower at low
temperatures. However, τr0ðs̄Þ exhibits a minimum as a
function of temperature for clusters that are larger and more
compact. As shown in the Supplemental Material [43], a
similar minimum is found in the time τ0ðs; s̄Þ to reach the
target starting from any state s. This striking result implies

FIG. 1. Graph of configurations for a tetramer cluster (N ¼ 4)
at T ¼ 0.24. The node size is proportional to the expected
residence time tϕðsÞ. The thickness and shade of the edges are
proportional to the transition probability pϕðs; s0Þ. Arrows in the
nodes represent an optimal policyϕ�ðsÞ to reach the orange target
shape (crosses correspond to a zero force).

FIG. 2. Expected return time to target as a function of 1=T.
Zero-force case τr0ðs̄Þ and under the optimal policy τr�ðs̄Þ with
F0 ¼ 0.4. The × corresponds to τr∞ðs̄Þ for T → ∞.
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that some targets exhibit an optimal temperature at which
the target can be reached in minimum time.
The presence of a minimum is associated to a change of

slope of τr0ðs̄Þ as a function of 1=T at high temperatures. We
therefore study the high temperature behavior in more detail.
In the limitT → ∞, the rates (1) are independent of the initial
and final state and of the force: γϕðs; s0Þ → 1. As a
consequence, τrϕðs̄Þ is independent of the policy ϕ at infinite
temperature τrϕðs̄Þ → τr∞ðs̄Þ. A simple result is known from
the literature [44] (see also Supplemental Material [43])
when all rates are equal: τr∞ðs̄Þ ¼ ðSN − 1Þ=ds̄, where the
degree ds̄ of the target is the number of states that can be
reached from the target s̄ in onemove.This quantity is similar
to the lower bound of the mean first passage time (averaged
over all initial states s), which is often used to characterize
first passages in random graphs [45–48].
When the temperature is decreased, the moves become

sensitive to the energy. From detailed balance, a move that
leads to a decrease of energy is faster than the reverse move.
As a consequence, the cluster goes faster towards states
with lower energy. Thus, the time to reach the target
decreases if the target has a lower energy. However, this
trend is only describing relative variations of the time to
reach different targets. When decreasing the temperature,
there is also a global slowing-down of the dynamics
because of the Arrhenius dependence of the rates on
temperature in Eq. (1). The decrease or increase of first
passage times to the target—or equivalently of τrϕðs̄Þ—
depends on the competition between these two effects:
relative energy effect vs global slowing down.
This competition can be analyzed from a high temper-

ature expansion to first order in 1=T (details are reported in
the Supplemental Material [43]), leading to

τr0ðs̄Þ ¼
�
1þM0ðs̄Þ

T

�
τr∞ðs̄Þ; ð4Þ

M0ðs̄Þ ¼
1

1 − S−1N
hδ̃ss̄hnss0 i0 − dsgnðs; s̄Þis∈S; ð5Þ

where δ̃ss0 ¼ 1 − δss0 with δ the Kronecker symbol, h·is∈Z
indicates the average over the states in the set of states Z,
and S is the set of all states. We also use the notation
h·i0 ¼ h·is0∈Bs

. In addition, the local covariance of any
quantity qss0 with τ∞ðs; s̄Þ is defined as

gqðs; s̄Þ ¼ hðqss0 − hqss00 i00Þðτ∞ðs0; s̄Þ − hτ∞ðs00; s̄Þi00Þi0;

where h·i00 ¼ h·is00∈Bs
. In Fig. 3(a), we see that Eq. (5) is in

good agreement with the value Msim
0 ðs̄Þ obtained from a

high temperature fit of the numerical solution from iterative
evaluation (small deviations are caused by the freezing of
4-neighbor particles).

In Eq. (5), the first term proportional to hnss0 i0 accounts
for the global slowing down of the dynamics, while the
second term proportional to dsgnðs; s̄Þ accounts for the
relative energy effect. The global slowing down contribu-
tion can be approximated by ρ0ðNÞ ¼ hhnss0 i0is∈S, which
converges exponentially to ρ0ð∞Þ ≈ 1.64 for large N (see
Supplemental Material [43] for details). The relative energy
effect is dominated by moves from Bs̄ to the target. It is
approximately proportional to a measure of cluster com-
pactness defined as the difference in the number of bonds to
break between moves leading to and moves not leading to
the target hnss̄ − hnss00 i00i−, where h·i− ¼ h·is∈Bs̄

. This
relation is derived and checked in the Supplemental
Material [43]. We therefore obtain

Mappr
0 ðs̄Þ ¼ ρ0ðNÞ þ ρ1hnss̄ − hnss00 i00i−; ð6Þ

where ρ1 ≈ 1.60. As shown in Fig. 3(a),Mappr
0 ðs̄Þ provides a

fair approximation to M0ðs̄Þ. The dispersion originates
from assumptions of uncorrelation of τ∞ with nss0 , and of
variations of τ∞ dominated by the difference between
τ∞ðs̄; s̄Þ ¼ 0 on the target and τ∞ðs; s̄Þ in its neighborhood
Bs̄. The sign of Mappr

0 ðs̄Þ can serve as a simple guide to the
presence of a minimum as a function of T, i.e., an optimal
temperature, and also makes explicit the link between the
minimum and the compactness of the target. For example,
in a linear one-atom-thick target, only the two atoms at the
tips can move, so that hnss̄i− ¼ 1 and an inspection of the
possible moves shows that hhnss00 i00i− ¼ 4=3. This leads to
Mappr

0 ðs̄Þ ¼ ρ0ðNÞ − ρ1=3 ≈ 0.9 > 0 for N ¼ 7, in agree-
ment with Msim

0 ðs̄Þ ≈ 1.04 found by iterative evaluation. In
contrast, in the limit of large compact (square, rectangular,
etc) islands, for which hnss̄i− ¼ 1 and hhnss00 i00i− → 3, we
obtain Mappr

0 ðs̄Þ ¼ −1.57 < 0 leading to a minimum.

(a) (b)

FIG. 3. Estimates of the high temperature slope. M0ðs̄Þ and
M�ðs̄Þ correspond to the analytical expressions of Eqs. (5),(8).
Msim

0 ðs̄Þ and Msim� ðs̄Þ are the slopes extracted from a high
temperature fit using iterative numerical methods. Mappr

0 ðs̄Þ
and Mappr

� ðs̄Þ are approximate expressions from Eqs. (6), and (9).
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Note, however, that the convergence of value iteration is
difficult not only for large clusters, but also for high-energy
(i.e., noncompact) target shapes when the temperature is
decreased. Indeed, disparate timescales have to be resolved
(fast relaxation towards low-energy shapes vs large time to
reach high-energy shapes).
Optimal policy in the presence of forces.—Our goal now

is to determine the optimal policy ϕ� that minimizes τϕðsÞ,
and the resulting optimal first passage time τ�ðs; s̄Þ ¼
minϕτϕðs; s̄Þ for nonzero forces. Such a problem, called
a Markov decision process, can be solved using well-
known dynamic programming methods [22,23]. We sub-
stitute the optimal policy in Eq. (2) to obtain the so-called
Bellmann optimality equation

τ�ðs; s̄Þ ¼ min
ϕðsÞ

�
tϕðsÞ þ

X
s0∈Bs

pϕðs; s0Þτ�ðs0; s̄Þ
�
: ð7Þ

As in the zero-force case, we iterate Eq. (7). However
minimization over the force in s is taken at each iteration.
This method, called value iteration, provides both τ�ðs; s̄Þ
and the optimal policy ϕ�. Because of the fast increase of
SN with N, its computational cost grows exponentially with
N (see Supplemental Material [43]).
We choose a force F that is always oriented in x̂ direction

[(10) lattice direction], with 3 possible values: f−F0x̂;
0; F0x̂g, with F0 > 0. An example of optimal policy is
shown in Fig. 1. As an important remark, the force can drive
the cluster towards any target shape even if the symmetries of
the target are not compatible with those of the force because
observation itself (i.e., the knowledge of s) breaks the
symmetry.
The gain due to the optimal policy is reported in Fig. 4,

using the zero-force policy as a reference. In the
Supplemental Material [43], we show that using a ran-
dom-force policy as a reference leads to similar results. As
seen from Fig. 4(a), the gain increases not only when F0 is
increased, but also when T is decreased. This is intuitively

expected since the relative change between different rates
due to a change of the force increases when F0=T is
increased. In addition, the gain increases when the size of
the cluster increases, as shown in Fig. 4(b). A naive
explanation for this trend is that an increase of N leads
to an increase of the number of states SN , and therefore to
an increase of the number of ways to tune the policy ϕ in
order to minimize τϕðs; s̄Þ.
Again, a high temperature expansion leads to (derivation

reported in the Supplemental Material [43])

τr�ðs̄Þ ¼
�
1þM�ðs̄Þ

T

�
τr∞ðs̄Þ;

M�ðs̄Þ ¼ M0ðs̄Þ −
F0

1 − S−1N
hjδ̃ss̄huss0 i0 − dsguðs; s̄Þjis∈S;

ð8Þ

where uss0 ¼ uss0 · x̂. The numerical solution of Eq. (7)
is in agreement with Eq. (8) (up to small deviations due to
four-neighbor particle freezing, see the Supplemental
Material [43]).
Two remarks are in order. First, huss0 i0 is small and its

contribution to the term proportional to F0 in Eq. (8) is
negligible. Second, the absolute value forbids the cancel-
lation of contributions with randomly different signs,
leading to a behavior that is qualitatively different from
that of M0ðs̄Þ. Indeed, the average is not dominated by the
largest terms coming from the strong change of τ∞ðs; s̄Þ
between the target and its first neighbors, but by the typical
values of jdsguðs; s̄Þj in all states. Based on this observa-
tion, a detailed analysis reported in the Supplemental
Material [43] leads to the approximation

Mappr
� ðs̄Þ ¼ M0ðs̄Þ −

21=2

π1=2
F0σuστ∞ðs̄Þhd1=2s is∈S; ð9Þ

where we have defined the standard deviations

σu ¼ hhðuss0 − huss00 i00Þ2i1=20 is∈S; ð10Þ

στ∞ðs̄Þ ¼ hhðτ∞ðs0; s̄Þ − hτ∞ðs00; s̄Þi00Þ2i1=20 is∈S: ð11Þ

In Fig. 3, the approximation Eq. (9) is seen to be valid up to
some dispersion originating mainly in the assumption of
uncorrelation between uss0 and τ∞.
While hnss̄ − hnss00 i00i− and σu are bounded because 1 ≤

nss0 ≤ 4 and −1=2 ≤ −uss0 ≤ 1=2, the quantities στ∞ðs̄Þ and
hd1=2s is∈S grow with N (see Supplemental Material [43]).
Hence, from Eq. (6), Mappr

0 ðs̄Þ is bounded and the con-
tribution proportional to F0 in Eq. (9) usually dominates
over the term M0ðs̄Þ for large N. Thus, when N is large
enough, M�ðs̄Þ should be negative and an optimal temper-
ature should be generically present. This trend is confirmed
by Fig. 3(b). Simulations with N ¼ 12 and F0 ¼ 0.4

(a) (b)

FIG. 4. Gain τr0ðs̄Þ=τr�ðs̄Þ in the return time to target due to the
optimization of the forces. (a) As a function of the force
magnitude F0, for a fixed target at different T. (b) For similar
targets of increasing size, with T ¼ 0.24 and F0 ¼ 0.4.
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(reported in Fig. 10 of the Supplemental Material [43]) also
confirm the generic presence of a minimum for larger
targets.
Discussion.—For atomic metals clusters where edge

diffusion is observed (Ag, Cu, etc.), estimates of the edge
diffusion barrier ∼J or kink energies ∼J=2 suggest that
J ≈ 0.2 to 0.3 eV [24,49–52]. For the square 9-atom target
depicted in Fig. 2 the optimal temperature corresponds to
J=kBT ≈ 2. Choosing J ¼ 0.2 eV we obtain an optimal
temperature ≈103 K which is too high to be observed in
usual experiments. Thus, τ0ðs; s̄Þ should decrease with
temperature in usual experimental conditions. If needed, a
quench can also be used to freeze the cluster once the target
shape is reached. However, using electromigration as an
external force leads to [25] F0a=J ≈ 10−4, which is too
small to allow for the control of few-atom clusters.
Edge diffusion can also be observed with colloids [26].

Using colloids with depletants, J∼ few kBT [53]. The
optimal temperature should then be observable in the
absence of force. Thermophoretic forces [54–56] for
polystyrene beads of radius 2.5 μm are ∼10 kBT=μm
[54]. Hence, micron-size colloids can lead to F0a=J ∼ 1,
which allows for shape control by a macroscopic force.
However, most experiments on colloid clusters report

mass transport dominated by attachment-detachment at the
edges [57]. Our analysis can be adapted to vacancy clusters
[5,58,59] with volume-preserving detachment-diffusion-
reattachment events. Moreover, other two- or three-
dimensional lattices also could be analyzed. Furthermore,
multiparticle and off-lattice processes (such as those involved
in dislocation-mediated dynamics) can be included as long as
they are predetermined (using, e.g., energy-exploration
methods) and their number is finite, to allow for the
numerical solution of Eqs. (2) and (7). Since the presence
of the minimum depends only on the generic competition
between the relative energy effect and global slowing down,
we speculate that it should not depend on the details of mass
transport kinetics.
In conclusion, thermal fluctuations can be used to reach

desired nanocluster shapes. There is a temperature that
minimizes the time to reach large-enough and compact
shapes. Furthermore, macroscopic fields can help gaining
orders of magnitude in the time to reach arbitrary shapes.
We hope that our Letter will motivate experimental inves-
tigations for the control of atomic and colloidal clusters,
and will open theoretical directions for the optimization of
first passage times on graphs.
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