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Reciprocity is a fundamental symmetry of Maxwell’s equations. It is known that reciprocity imposes
constraints on transmission, absorption, and emission. Here, we reveal reciprocity constraints on reflection.
We determine the sets of all attainable reflection coefficients of n-port scattering matrices with prescribed
singular values, both with and without assuming reciprocity. Their difference establishes reciprocity
constraints and nonreciprocal behaviors. As an application, we examine the conditions for all-zero
reflections. Our results deepen the understanding of reciprocity in optics.
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Lorentz reciprocity is a fundamental internal symmetry
of Maxwell’s equations [1–6]. It imposes direct constraints
on transmission, absorption, and emission: When a system
satisfies Lorentz reciprocity, the transmission between any
two ports must be symmetric [7], and the absorptivity in
each port must equal the corresponding emissivity [8,9].
Reciprocity constraints are essential in understanding
photonic transport [10–12]. In contrast, systems breaking
Lorentz reciprocity enable unique nonreciprocal phenom-
ena [13,14] such as isolation [15–21], circulation [22],
robust topological transport [23–26], and violation of
Kirchhoff’s law [27,28]. Thus, it is crucial to understand
the fundamental role of reciprocity in basic phenomena.
In this Letter, we study reciprocity constraints on

reflection. We consider a general linear time-invariant
electromagnetic system [Fig. 1(a)]. The system can be
lossy, lossless, or with gain. It is connected to its exterior by
n ports. Describing the incoming and outgoing waves as

a ¼ ða1;…; anÞT; b ¼ ðb1;…; bnÞT; ð1Þ

where ai and bi are the input and output wave amplitudes in
the ith port, respectively. The system is then described by a
scattering matrix S of size n × n:

b ¼ Sa; S ¼

0
BBBBB@

r1 t12 � � � t1n
t21 r2 � � � t2n

..

. ..
. . .

. ..
.

tn1 tn2 � � � rn

1
CCCCCA
: ð2Þ

Here, ri is the reflection coefficient in the ith port [29], and
tij is the transmission coefficient from the jth to the ith
port. In general, S can be an arbitrary complex matrix.
When the system has symmetries, S must satisfy the

corresponding constraints. In particular, if the system is
lossless, Smust be unitary [7]. If the system is reciprocal, S
must be symmetric [6,7]:

S ¼ ST: ð3Þ

From Eqs. (2) and (3), the existence of any reciprocity
constraint on reflection may appear as a surprise: The
reflection coefficients appear on the diagonal of S and
thus are not obviously affected by Eq. (3). As a known
example that hints at the existence of such a constraint, we
consider a simple three-port lossless system with C3

symmetry [Fig. 1(b)]. Without assuming reciprocity, its
S matrix takes the form

S ¼

0
B@

r t1 t2
t2 r t1
t1 t2 r

1
CA; ð4Þ

where r can take any complex number with jrj ≤ 1. If the
system is further assumed to be reciprocal, then t1 ¼ t2.
It has been shown [31,32] that, in this case,

FIG. 1. (a) A general n-port system. (b) A 3-port lossless
system with C3 symmetry.
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jrj ≥ 1

3
: ð5Þ

Thus, jrj < ð1=3Þ can only occur in nonreciprocal systems.
This example indicates that there exist reciprocity con-
straints on reflection.
Here, we study reciprocity constraints on reflection for

general n-port systems. Using Thompson’s theorems in
matrix analysis [33,34], we completely determine the sets
of all attainable reflection coefficients for n-port scattering
matrices with prescribed singular values, in both the cases
with and without assuming reciprocity. From this analysis,
we establish the reciprocity constraints on reflection and
provide the criteria for nonreciprocal phenomena. As one
application, we examine the possibility for a device to
exhibit zero reflection in every port. We show that if the
device is lossless, it must be nonreciprocal for n ¼ 3 but
can be reciprocal for other values of n > 1. Our results
reveal unrecognized consequences of reciprocity and
deepen the understanding of optical transport through
photonic structures.
Before presenting our results, we summarize useful

notations. First, we provide some notations about the S
matrix in Eq. (2). We refer to r≡ ðr1; r2;…; rnÞ as the
“reflection coefficient vector.” Since the phases of ri
can be arbitrarily set by varying reference planes [7],
we mainly focus on the magnitude jrij and denote
jrj≡ ðjr1j; jr2j;…; jrnjÞ. The system’s dissipative property
is characterized by the singular values of S:
σðSÞ≡ ðσ1; σ2;…; σnÞ, listed in nonincreasing orders. (A
singular value of a matrix S is the nonnegative square root
of an eigenvalue of the matrix S†S [35].) ð1 − σ2i Þ is
directly related to the absorptivity [36]. We refer to σðSÞ
as the “singular value vector.” For lossless systems, all σi
are 1. Then, we provide some mathematical notations. Let
x ¼ ðx1; x2;…; xnÞ ∈ Rn. We define x↓ ¼ ðx↓1 ; x↓2 ;…; x↓nÞ,
where x↓1 ≥ x↓2 ≥ � � � ≥ x↓n reorder the components of x in
nonincreasing order. We also assume that empty sum is
zero:

P
0
1 ¼ 0.

Now we discuss our main results. First, we consider
lossless systems. We denote by A½n� the set of attainable r
for all n-port lossless systems without assuming reciprocity,
and by B½n� the corresponding set for reciprocal lossless
systems. Obviously B½n� ⊆ A½n�. If B½n� ≠ A½n�, there exist
reciprocity constraints on reflection. Namely, there are
reflection coefficients that are attainable only if reciprocity
is broken.
To determine the reciprocity constraints, we apply

Thompson’s theorems [33,34] as summarized in the
Supplemental Material (SM) [37], Sec. I, and obtain

A½n� ¼
�
r ∈ Cn∶jrj↓1 ≤ 1;

Xn−1
i¼1

jrj↓i − jrj↓n ≤ n − 2

�
; ð6Þ

B½n� ¼
�
r ∈ A½n�∶

Xn−3
i¼1

jrj↓i −
Xn
i¼n−2

jrj↓i ≤ n − 4

�
; ð7Þ

where the condition in Eq. (7) is absent when n ¼ 1, 2.
We illustrate the physical implications of these results.

Equations (6) and (7) completely characterize the sets of
attainable reflection coefficients for all general and recip-
rocal lossless systems, respectively.
When n ¼ 1, 2, B½n� ¼ A½n�: There is no reciprocity

constraint. Specifically,

B½1� ¼ A½1� ¼ fr ∈ C∶jrj ¼ 1g; ð8Þ

B½2� ¼ A½2� ¼ fr ∈ C2∶jr1j ¼ jr2j ≤ 1g: ð9Þ

Equations (8) and (9) are well-known for 1-port and 2-port
lossless systems. When n ≥ 3, B½n�⫋ A½n�: There is a
single reciprocity constraint as given in Eq. (7). Any
violation of that inequality is a nonreciprocal effect.
For example, when n ¼ 3,

A½3� ¼ fr ∈ Cn∶jrj↓1 ≤ 1; jrj↓1 þ jrj↓2 − jrj↓3 ≤ 1g; ð10Þ

B½3� ¼ fr ∈ A½3�∶jr1j þ jr2j þ jr3j ≥ 1g: ð11Þ

Figures 2(a) and 2(b) show the sets of attainable
ðjr1j; jr2j; jr3jÞ for 3-port general and reciprocal lossless
systems, respectively. Both sets are convex polyhedra
embedded inside a unit cube, with C3v symmetry around
the [111] direction. The former is a triangular bipyramid.
The latter is a regular tetrahedron. Their difference is a
tetrahedron with a volume of ð1=6Þ.
The above geometric interpretation can be generalized to

n > 3. Equations (6) and (7) indicate that the set of
attainable jrj is an intersection of finitely many closed
half-spaces inRn in both general and reciprocal cases. Each
set is a bounded convex n-polytope [38] that is invariant
under any permutation of coordinates. The reciprocity
constraint in Eq. (7) corresponds to ðn

3
Þ half-spaces, which

FIG. 2. Attainable ðjr1j; jr2j; jr3jÞ for 3-port (a) lossless sys-
tems, (b) reciprocal lossless systems.
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further bound the polytope for general systems and produce
a smaller polytope for reciprocal systems.
Equation (7) suggests introducing a criterion function:

f½n; r� ¼
Xn−3
i¼1

jrj↓i −
Xn
i¼n−2

jrj↓i : ð12Þ

We prove that when n ≥ 3, the range of f½n; r� for all r ∈
A½n� is

IA½n� ¼ ½minfn − 6; 0g; n − 3�; ð13Þ

the range of f½n; r� for all r ∈ B½n� is

IB½n� ¼ ½minfn − 6; 0g; n − 4�: ð14Þ

IB½n�⫋IA½n� confirms B½n�⫋A½n�when n ≥ 3. The proofs of
Eqs. (13) and (14) can be found in SM, Sec. II. We plot
IA½n� and IB½n� in Fig. 3, where the red intervals correspond
to nonreciprocal effects.
We further illustrate the probability distribution for the

values of f½n; r�. Figures 3(b),(c) show the histograms of
f½3; r� and f½4; r� for 1 000 000 random unitary matricesUi

and Ũi ¼ UiUT
i . Note Ũi is symmetric. Here, Ui is drawn

from circular unitary ensemble with Haar measure [39],
which provides a uniform probability distribution on UðnÞ.
The horizontal lines indicate the theoretical bounds. In each
case, the values of f½n; r� tend to fill the entire predicted
intervals. We also observe anomalous peaks in Fig. 3(b)
but not in Fig. 3(c). The reason for this needs further
investigation.
Now we explicitly construct a set of Smatrices for which

the values of f½n; r� cover the whole intervals of IA½n� and

IB½n�, respectively. Such constructions are not unique; other
matrices may also reach the bounds. For general lossless
systems, consider three families of n × n matrices for
n ≥ 3:

In; Cn¼

0
BBBBBBBB@

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..
. . .
. ..

.

0 0 0 � � � 1

1 0 0 � � � 0

1
CCCCCCCCA
; Dn¼

�
In−3 0

0 C3

�
; ð15Þ

where In is the n-identity matrix. All these matrices are
unitary and thus characterize some lossless systems: In
characterizes an n-port perfect reflector, Cn an n-port
circulator, Dn an (n − 3)-port perfect reflector combined
with a 3-port circulator. Moreover, f½n; r� ¼ n − 6, 0, and
n − 3 for In, Cn, and Dn, respectively. We choose Un;u as
Dn for any n ≥ 3 to reach the upper bound of IA½n�. We
choose Un;l as In when 3 ≤ n < 6 or Cn when n ≥ 6 to
reach the lower bound of IA½n�. For each n ≥ 3, we define a
skew-Hermitian matrix,

Jn ¼ log ðUn;uU
†
n;lÞ; ð16Þ

then construct a continuous path in UðnÞ between Un;l

and Un;u:

UnðτÞ≡ eJnτUn;l; 0 ≤ τ ≤ 1: ð17Þ

By continuity, the values of f½n; r� for UnðτÞ will cover the
whole interval of IA½n�.
For reciprocal lossless systems, we denote

M5¼

0
BBBBBBBB@

0 1
2

z −z −1
2

1
2

0 1
2

z −z

z 1
2

0 1
2

z

−z z 1
2

0 1
2

−1
2
−z z 1

2
0

1
CCCCCCCCA
; z¼1−

ffiffiffi
3

p
i

4
: ð18Þ

M5 corresponds to perhaps the simplest 5-port device that is
lossless, reciprocal, and with all-zero reflection. M5 is a
Toeplitz matrix [35] with many symmetries. Then we
introduce three additional families of n × n matrices:

En¼
�
In−2 0

0 C2

�
; Fn¼

0
BB@
C2 0

. .
.

0 C2

1
CCA; n even; ð19Þ

FIG. 3. (a) The range of f½n; r�. Blue intervals: IB½n�. Union of
blue and red intervals: IA½n�. Red intervals: nonreciprocal effects.
(b),(c) Histograms of f½n; r� for 1 000 000 random n-port lossless
systems: (b) n ¼ 3, (b) n ¼ 4. Red, blue, and gray lines indicate
general upper bounds, reciprocal upper bounds, and lower
bounds, respectively.
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Gn ¼

0
BBBBB@

C2 0

. .
.

C2

0 M5

1
CCCCCA
; n ¼ 7; 9;…: ð20Þ

All these matrices are symmetric and unitary and thus
characterize some reciprocal lossless systems. Moreover,
f½n; r� ¼ n − 6; n − 3, 0 and 0 for In, En, Fn, and Gn,
respectively. We choose Ũn;u as En for any n ≥ 3 to reach
the upper bound of In½B�. We choose Ũn;l as In when
3 ≤ n < 6, or Fn when n ≥ 6 and even, or Gn when n ≥ 6
and odd, to reach the lower bound of In½B�. For each n ≥ 3,
we apply Takagi’s decomposition [35,40] (see SM, Sec. III,
for more details):

Ũn;l ¼ Vn;lVT
n;l; Ũn;u ¼ Vn;uVT

n;u: ð21Þ

Then we define a skew-Hermitian matrix,

Kn ¼ log ðVn;uV
†
n;lÞ; ð22Þ

and construct a continuous path between Ũn;l and Ũn;u in
the space of n × n symmetric unitary matrices:

ŨnðτÞ≡ eKnτŨn;leK
T
n τ; 0 ≤ τ ≤ 1: ð23Þ

By continuity, the values of f½n; r� for ŨnðτÞ will cover the
whole interval of IB½n�.
We proceed to study generic systems with loss or gain.

The modification of reflection due to loss or gain has been
extensively discussed in the literature [41–44]. We compare
systems with the same singular values and hence the same
dissipative property [36]. We denote by A½n; σ� the set of
attainable r for all n-port systems with a prescribed σ ∈ Rn,
and by B½n; σ� the corresponding set for reciprocal sys-
tems. We apply Thompson’s theorems [33,34] and obtain

A½n; σ� ¼
�
r ∈ Cn∶

Xk
i¼1

jrj↓i ≤
Xk
i¼1

σi; 1 ≤ k ≤ n;

Xn−1
i¼1

jrj↓i − jrj↓n ≤
Xn−1
i¼1

σi − σn

�
; ð24Þ

B½n;σ�¼
�
r∈A½n;σ�∶

Xk−1
i¼1

jrj↓i −
Xn
i¼k

jrj↓i ≤
X
i≠k

σi−σk;

1≤k≤n−1;
Xn−3
i¼1

jrj↓i −
Xn
i¼n−2

jrj↓i ≤
Xn−2
i¼1

σi−
Xn
i¼n−1

σi

�
:

ð25Þ

The last condition in Eq. (25) is absent when n ¼ 1, 2.

We illustrate the physical implications of these results.
Equations (24) and (25) completely characterize all attain-
able reflection coefficients for general and reciprocal
systems, respectively, with prescribed singular values σ.
When n ¼ 1, there is no reciprocity constraint:

B½1; σ� ¼ A½1; σ� ¼ fr ∈ C∶jrj ¼ σ1g: ð26Þ

When n ¼ 2, if σ1 ¼ σ2, there is no reciprocity constraint:

B½2; σ� ¼ A½2; σ� ¼ fr ∈ C2∶jr1j ¼ jr2j ≤ σ1g: ð27Þ

Equation (27) reduces to Eq. (9) when σ1 ¼ σ2 ¼ 1. If
σ1 ≠ σ2, there is a single reciprocity constraint:

jr1j þ jr2j ≥ σ1 − σ2: ð28Þ

As an illustration, Figs. 4(a) and 4(b) show the sets of
attainable ðjr1j; jr2jÞ for 2-port general and reciprocal
systems, respectively, with σ ¼ ð0.70; 0.32Þ. Both sets
are convex polygons with mirror symmetry about the
½11� axis. The former is a pentagon. The latter is a rectangle.
Their difference is an isosceles right triangle.
When n ≥ 3, there are in general n reciprocity con-

straints on reflection as given in Eq. (25). Depending on σ,
some of the inequalities may be redundant. As an illus-
tration, Figs. 5(a) and 5(b) show the sets of attainable
ðjr1j; jr2j; jr3jÞ for 3-port general and reciprocal systems,
respectively, with σ ¼ ð0.9; 0.7; 0.5Þ. Both sets are convex
polyhedra with C3v symmetry around the [111] direction.
The former is a decahedron. The latter is a tetradecahedron.

FIG. 4. Attainable ðjr1j; jr2jÞ for 2-port systems with
σ ¼ ð0.70; 0.32Þ. (a) General systems. (b) Reciprocal systems.
(c),(d) Numerical results of 200 000 random samples.
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Their difference consists of four tetrahedra. This is more
evident in Figs. 5(c) and 5(d).
Here, we emphasize that the conditions characterizing

A½n�, B½n�, A½n; σ�, and B½n; σ� are both necessary and
sufficient: Any value of r in the set is achievable; any value
of r not in the set is not. As one illustration, see SM,
Sec. IV, for explicit examples of S matrices for which jrj
reaches the vertices of the polytopes in Figs. 2, 4, and 5. As
another illustration, Figs. 4(c) and 4(d) show ðjr1j; jr2jÞ of
200 000 random asymmetric and symmetric matrices with
σ ¼ ð0.70; 0.32Þ, respectively. In each case, all the points
are contained in the predicted region; the whole predicted
region will be covered when more examples are considered.
(See SM, Sec. V, for the histograms of jr1j þ jr2j.)
We obtain similar numerical results for other n and σ.
As an application, we examine the possibility of all-zero

reflection:

r ¼ ð0;…; 0Þ: ð29Þ

Such a property is desired in various photonic applications.
It is necessary for an ideal cloak [45,46], which demands
the complete absence of scattering. It differs from coherent
perfect absorption [47], which demands the complete
absorption, hence the absence of reflection, only for a
specific incident wave. In the lossless cases, we substitute
Eq. (29) into Eqs. (6) and (7) and deduce that all-zero
reflection is possible when n ≠ 1 for nonreciprocal sys-
tems, and when n ≠ 1, 3 for reciprocal systems. Thus, a
3-port lossless device exhibiting all-zero reflections must
be nonreciprocal. An example is a 3-port circulator as
designed in both microwave [31] and optical frequencies

[22]. For systems with gain or loss, we substitute Eq. (29)
into Eqs. (24) and (25). We deduce that for nonreciprocal
systems, all-zero reflection is possible when n ¼ 1, σ ¼ 0,
and when n ≥ 2, for all σ’s. For reciprocal systems, all-zero
reflection is possible if σ satisfies the following conditions:
When n ¼ 1, σ ¼ 0; when n ¼ 2, σ1 ¼ σ2; when n ≥ 3,

Xn
i¼2

σi − σ1 ≥ 0;
Xn−2
i¼1

σi − σn−1 − σn ≥ 0: ð30Þ

We verify these criteria using previous examples. Figure 2
confirms the cases of 3-port lossless systems. Figure 4
confirms the cases of 2-port systems with σ1 ≠ σ2.
Figure 5 confirms the cases of 3-port systems with
σ ¼ ð0.9; 0.7; 0.5Þ, where σ violates the second inequality
of (30). Cn, Fn, and Gn in Eqs. (15), (19), and (20) are
examples of lossless systems exhibiting all-zero reflection.
In conclusion, we determine all attainable reflection

coefficients for general and reciprocal n-port electromag-
netic systems with prescribed singular values. We establish
the reciprocity constraints on reflection. We deduce the
criteria for all-zero reflection. Our work elucidates the
fundamental role of reciprocity in reflection and provides
theoretical guidelines for practical photonic design. The
theory can be readily extended to other classical and
quantum wave systems described by scattering matrix
formalisms, including acoustic and electronic waves.
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