
Topological Order in an Antiferromagnetic Tetratic Phase

Daniel Abutbul and Daniel Podolsky
Physics Department, Technion, 32000 Haifa, Israel

(Received 19 December 2021; revised 11 April 2022; accepted 2 June 2022; published 23 June 2022)

We study lattice melting in two-dimensional systems of spinful particles that interact antiferromagneti-
cally. We argue that, for strong spin interactions, single lattice dislocations are forbidden by magnetic
frustration. This leads to a melting scenario in which a tetratic phase, containing free dislocation pairs and
bound disclinations, separates the solid from the liquid. We demonstrate this phase numerically in a system
of hard spheres confined between parallel plates, where spins are represented by the heights of the spheres.
In the tetratic phase, the spins are shown to be as antiferromagnetically ordered as allowed by their spatial
configuration.

DOI: 10.1103/PhysRevLett.128.255501

In typical solid-state antiferromagnets (AF), the Néel
temperature is significantly lower than the melting temper-
ature of the crystal. For this reason, spin interactions do not
play a role in the crystal melting. But what would happen
if the AF interactions were to be comparable, or even
dominant, over the interactions responsible for the crystal
ordering? Would this change the nature of the melting
transition? One naively expects melting to be a direct
transition from an AF solid to a magnetically disordered
liquid, as it is difficult to envision lattice melting that does
not destroy antiferromagnetism.
In this Letter, we demonstrate that another possibility

exists in two dimensions (2D): the solid and liquid phases
could be separated by an intermediate phase, a topologi-
cally ordered tetratic. This phase has strong AF correlations
that survive the partial melting of the lattice. We will first
give a general argument for this phase, based on a
modification of the Kosterlitz-Thouless-Halperin-Nelson-
Young (KTHNY) picture of defect-mediated melting [1–3].
This will be complemented by a numerical demonstration
of this phase in an experimentally realizable microscopic
system, a collection of hard spheres confined between
parallel plates.
The proposed tetratic phase is unusual. In it, single

dislocations bind into free dislocation pairs, such that
double dislocations (of Burgers vector jbj ¼ ffiffiffi

2
p

) are free,
while fundamental (jbj ¼ 1) dislocations remain bound. In
this sense, the tetratic is topologically ordered, since
higher-charge topological defects proliferate while the
fundamental defects do not [4–8].
Tetratic phases have been previously observed [9–19],

including in a closely related system of Hertzian spheres
[20]. However, the possibility of topological order, if
present, has not been explored. Evidence for binding of
defects was seen in bilayer systems of interacting particles
[21], although the tetratic phase was not observed. Previous
works considered the possibility of topological order [22]

and AF order [22,23] in molten phases, but did not
demonstrate these behaviors microscopically.
We begin by considering the effect of strong AF

interactions on the topological defects of a crystal.

FIG. 1. (a) A single dislocation in AF lattice creates a string of
unsatisfied bonds (green). Burgers circuit shown by a thick black
line. (b) At a double dislocation, no string is created. (c) Phase
diagram of confined hard spheres (adapted from Ref. [27]).
(d) Phase diagram at h ¼ 0.8, as obtained in current work. We
focus on an intermediate density ρH ¼ 0.81, shown to be a
topologically ordered tetratic. (e) Probability density function of
the normalized sphere heights, at two extreme values of ρH . The
spheres are seen to stay close to the confining plates. (f) Spin
representation of the spheres: the upper or lower layer is
associated with s ¼ �1.
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Consider a system of particles with Ising spins whose
ground state is a Néel state on the square lattice. As shown
in Fig. 1(a), a fundamental dislocation breaks the bipartite-
ness of the lattice and introduces frustration by forcing a
semi-infinite string of unsatisfied bonds (across which
spins are aligned) to emanate from the dislocation core
[24–26]. This costs energy that grows linearly with system
size, overwhelming the logarithmic free-energy gain asso-
ciated with the entropy of the dislocation. Hence, the
AF background prohibits fundamental dislocations from
occurring in isolation. By contrast, a double dislocation
[Fig. 1(b)] has a Burgers vector jbj ¼ ffiffiffi

2
p

that connects two
spins of the same sublattice. Therefore, it preserves
bipartiteness and does not cause frustration [24]. Hence,
although double dislocations cost more lattice energy than
fundamental dislocations, they do not cost magnetic
energy, and they can therefore proliferate when the entropic
gain is large enough. Within the KTHNY scenario, a
topologically ordered tetratic then results, provided the
disclinations remain bound.
Having described the mechanism underlying the topo-

logically ordered tetratic, we turn to the question: Does this
phase occur in an experimentally realizable microscopic
model? To obtain strong AF interactions, we look for a
system in which the AF and crystallization interactions
have a common origin. One such candidate is a collection
of hard spheres confined between parallel plates. The
spheres do not have internal degrees of freedom.
However, when the separation between plates H is larger
than the sphere diameter σ but smaller than 2σ, one can
think of the height of the spheres relative to the center plane
as an effective “spin.” In what follows, we will use the
terms “solid,” “liquid,” and “tetratic” to refer to the 2D
configuration of the spheres in the plane, without regard to
their out-of-plane heights; these will be referred to as their
spin. The spheres are noninteracting, other than a hard-core
repulsion which forbids overlaps. However, thermally
induced entropic forces favor configurations in which
the spheres pack well. This gives rise to effective AF
interactions between spins, since two nearby spheres can
get closer to each other when their heights are different.
This system has been studied as a model of AF Ising spins
on a hexagonal lattice and can be realized experimentally
using colloids [28,29].
Since height is a continuous variable, the effective spins

are soft. However, the spheres in practice lie close to the
confining plates [Fig. 1(e)], making the hard spin assign-
ment s ¼ �1 a good approximation [Fig. 1(f)].
The phase diagram for this system [Fig. 1(c)] was

computed in Ref. [27] (the possibility of intermediate
phases—tetratic or hexatic—was not considered). The
phase diagram is characterized by two dimensionless
parameters: the normalized density ρH and plate separation
h, defined by ρH ¼ ðNσ3=AHÞ and h ¼ ðH=σÞ − 1. Here,
N is the number of spheres and A is the total area. For h ¼ 0

the system is strictly 2D, and the spheres arrange in a
hexagonal solid. As the plate separation is increased, h > 0,
the out-of-plane fluctuations increase, and so do the
effective AF interactions. These can become strong enough
to modify the 2D lattice into a bipartite lattice, in order to
resolve the magnetic frustration of the hexagonal lattice.
This is an indication that the magnetic and lattice elastic
energy scales are comparable in this system. In our work,
we focus on h ¼ 0.8, where the preferred solid over a wide
range of densities is a square lattice (at large values of ρH, a
rhombic structure is preferred due to further-neighbor
interactions).
To thermalize the spheres, we use the event-chain

Monte Carlo algorithm [30], as it equilibrates quickly
and succeeds in escaping local minima [31,32]. We extend
the 2D straight event-chain algorithm, described in
Ref. [30], to three dimensions. In our extension, we apply
cyclic boundary conditions along x̂ and ŷ and hard-wall
conditions in the ẑ direction: When a sphere hits a wall, it
bounces back (see the Supplemental Material [33]).
At h ¼ 0.8, as the sphere density is reduced starting from

ρH ¼ 0.9, we find a sequence of transitions from square
lattice solid, to tetratic, to liquid. We locate the critical
densities at the transitions by looking for a change of the
correlation functions, from algebraic to exponential decay.
At the solid to tetratic, the change is in the positional
correlations, gkðrÞ; at the tetratic to liquid, the change is in
the bond-orientational correlations g4ðrÞ [20,34,35]. These
correlation functions are obtained from corresponding
complex-valued order parameters, as described next.
The positional order parameter, evaluated at the location

of sphere α, is defined with respect to a vector k̄ in the
reciprocal lattice by ψ k̄ðαÞ ¼ eik̄·rα [2], where rα ¼ ðxα; yαÞ
is the lateral position of the sphere’s center, ignoring its
height. The value of k̄ may deviate slightly from that of a
perfect lattice of the given density, due to lattice defects [31].
Instead, we choose k̄ at the numerically evaluated Bragg
peak, which maximizes the static structure factor
SðkÞ ¼ ð1=NÞjPα ψkðαÞj2. The bond-orientation order
parameter of the square lattice is defined by ψ4ðαÞ ¼
1
4

P
β∈NNðαÞ e4i×θαβ [27], where β ∈ NNðαÞ runs over the

four nearest neighbors of the sphere α, and θαβ is the angle
between the bond vector rα − rβ and the x̂ axis. The
correlation gðrÞ of a complex field ψðrÞ is defined as the
product of the field at points a distance r from each other:
gðrÞ¼ R ðd2rαd2rβ=AÞf½δðjrα−rβj−rÞ�=2πrgψ�ðrαÞψðrβÞ.
As, in practice, we have only samples of the continuous field
ψðrÞ at discrete positions rα, we use binning of ψ�ðαÞψðβÞ
according to the histogram of separations between pairs of
spheres jrα − rβj. The correlation of ψ ¼ ψ4 is denoted by
g4ðrÞ and that of ψ ¼ ψ k̄ by gkðrÞ.
Figure 2 shows correlations for various values of ρH.

The change in gkðrÞ from algebraic to exponential decay
happens at ρH ≈ 0.83. The onset of exponential decay in
g4ðrÞ happens at ρH ≈ 0.78. This leaves an intermediate
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tetratic phase for 0.78≲ ρH ≤ 0.83. We note here that the
tetratic should show algebraic decay in g4ðrÞ, whereas we
seemingly obtain nondecaying correlations at ρH ¼ 0.81
[as we do in gkðrÞ at ρH ¼ 0.85, which lies in the solid
phase]. Similar results were obtained for the hexatic in
Refs. [31,35], and may be attributed to very slow algebraic
decay. For the hexagonal lattice, bounds exist for the decay
rate of gkðrÞ in the solid (r−1=3), and of g4ðrÞ in the hexatic
(r−1=4) [2,34]. For the square lattice, however, we do not
know of such rigorous bounds [20]. Also note that
topological order is expected to change these power laws.
In Fig. 2, we display the standard power laws for the
hexagonal lattice as a guide to the eye, only.
We next consider the transition from the tetratic to the

liquid, which occurs near ρH ≈ 0.78. At ρH ¼ 0.78, the
orientational correlations look algebraic. However, at this
density, we cannot rule out phase coexistence: we observe
bimodal histograms of the orientational order parameter
ψ4, as well as proliferation of grain boundaries (see the
Supplemental Material [33]). This suggests that the tetratic
to liquid transition is first order [35] (finding a Mayer-
Wood loop in the equation of state would settle this more
definitely [14]). A similar scenario, of a continuous solid to
hexatic transition, followed by a first order hexatic to liquid
transition, was observed in hard disks in 2D [31,32,35], and
in 2D regular polygons [9].

Having found a tetratic phase, we move on to demon-
strate that it is topologically ordered, in the sense of only
containing free jbj ¼ ffiffiffi

2
p

dislocations. To visualize the
dislocation field bðrÞ in the system, we implement a 2D
dislocation extraction analysis code (DXA) following
Ref. [36]. We first rotate our system by the angle
− 1

4
arg ðð1=NÞPα ψ4ðαÞÞ, thus aligning the average bond

orientation with the x̂ axis. We then perform a Delaunay
triangulation of the sphere lateral positions. Then, for each
triangle αβγ of the triangulation, we compute whether it
contains a dislocation. For this, we define the set of
separation vectors between nodes of the perfect square
lattice, S0 ¼ fðna;maÞjðn;mÞ ∈ Z2g, where a ¼ ð2π=jk̄jÞ
is the lattice constant. Then, for each edge vector of the
triangle,Δαβ ¼ rα − rβ, we find the nearest vectorΔ0

αβ ∈ S0
within this set. Finally, the Burgers vector is given
by bαβγ ¼ Δ0

αβ þ Δ0
βγ þ Δ0

γα.
In the tetratic phase, at ρH ¼ 0.81, we indeed find that

the free dislocations all have Burgers vector jbj ¼ ffiffiffi
2

p
, as

shown in Fig. 3(a). To be more precise, the overwhelming
majority of dislocations obtained from DXA have a unit
Burgers vector. However, these tend to appear as bound
dislocation-antidislocation pairs, or as larger local clusters
whose total Burgers vector sums to zero, as illustrated in
Fig. 3(b). To clean those neutral groups, we first remove
neighboring dislocation-antidislocation pairs recursively.
We then use a single-linkage agglomerative clustering
algorithm [37] (see the Supplemental Material [33] for
more details). At the end of this procedure, we find clusters
that are either neutral, or have a total

ffiffiffi
2

p
Burgers vector,

indicating topological order. The free double dislocations
are shown in Fig. 3(a), with colors according to their
orientation. As a check that the cleaning procedure does not
bias toward double dislocations, we run the same analysis
on mock data consisting of randomly scattered single
dislocations and bound pairs. We find that, by contrast
to the tetratic, in this case nearly all of the final clusters
have a unit Burgers vector.
Having demonstrated topological order, we next study

the antiferromagnetism in the tetratic phase. As argued
above, double dislocations preserve bipartiteness.
Therefore, it may be possible, in principle, for the tetratic
phase to have true long-range AF order [22–24]. It is
difficult to give a precise definition of long-range AF order
in the tetratic phase. The usual definition involves the spin-
spin correlation function sisjeiK·ðri−rjÞ, where K ¼
ðπ=a; π=aÞ for a square lattice. However, in the tetratic
phase, eiK·ðri−rjÞ decays exponentially. This makes the spin-
spin correlation function, as defined above, short ranged
regardless of the spin configuration. Nonetheless, in
practice we find fairly sharp peaks in the magnetic structure
factor, SMðkÞ ¼ ð1=NÞPi;j sisje

ik·ðri−rjÞ, as shown in
Fig. 4. As the thermodynamic limit is approached, these
peaks are expected to eventually spread out into a ring due
to the lack of orientational long-range order. Interestingly,

FIG. 2. Positional (gk) and orientational (g4) correlations for
constant plate separation h ¼ 0.8 and varying density ρH, for a
system with N ¼ 90; 000 spheres (the system size at ρH ¼ 0.8 is
250σ × 250σ × 1.8σ). Exponential decay of correlation is ob-
served at ρH ≤ 0.83 for the positional correlation (upper panel)
and ρH ≲ 0.78 for the bond-orientational correlation (lower
panel). The r−1=3; r−1=4 bounds from the hexagonal lattice are
shown for reference. The features beyond the dashed red line are
associated with finite size effects.
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in the liquid phase, we find a ring-shaped maximum in SM

of radius
ffiffiffi
2

p
π=a, indicating that strong AF correlations

survive even in the liquid.
We leave aside the question of the possible long-range

nature of the AF order, and instead focus on quantifying the
degree of antiferromagnetism in the system by comparing it
to the ground state of the AF Ising model on a correspond-
ing lattice. For this, we introduce a criterion for spheres to
be considered neighbors, and define the four-nearest-
neighbor (4NN) graph, as follows: Two spheres, α and
β, are connected in the graph if and only if β is one of the

four nearest neighbors of α and α is one of the four nearest
neighbors of β. Figure 3(b) shows an example of the 4NN
graph for a typical configuration in the tetratic phase. A
number of bonds in this graph connect aligned effective
spins, i.e., they are unsatisfied from the point of view of
antiferromagnetism. The unsatisfied bonds in Fig. 3(b) are
dilute and relatively isolated from one another. They occur
due to large local fluctuations in sphere positions; near
vacancies; or near a bound pair of single dislocations,
which creates a short string of unsatisfied bonds connecting
the pair. All of these effects can result in a local reorgani-
zation of the connectivity of the graph, and give rise to a
small number of unsatisfied bonds that can be removed by
performing local rearrangements of the spheres (or by
adding individual spheres in the case of vacancies). By
contrast, if the system had free single dislocations, this
would lead to long strings of unsatisfied bonds joining
faraway dislocations, and to large odd cycles that are not
locally removable.
The degree of antiferromagnetism of a given hard-sphere

configuration is captured by the fraction of unsatisfied
bonds in the 4NN graph, funsat. We compare this to the
degree of frustration of the graph ffrust, defined as the
minimal value of funsat obtained when all possible spin
configurations are considered. By definition, ffrust ≤ funsat.
Equivalently, ffrust is the fraction of unsatisfied bonds in the
ground state of the AF Ising model, defined by the
Hamiltonian [38] HIsing ¼

P
hα;βi sαsβ where the sum runs

over nearest neighbors in the 4NN graph. To find the
ground state of HIsing, we simulate the model at finite
temperature T using the Metropolis algorithm [38], and
slowly anneal from T ¼ 2.5 to T ¼ 1=3 starting from
multiple random initializations of the Ising spins (the
system effectively freezes below T ¼ 1=3).
In Fig. 5, we see that funsat follows ffrust in the solid and

tetratic phases. Hence, the effective spins in the hard-sphere
system are as AF ordered as allowed by the lattice. This is a
very strong result. In particular, the ability of the spins to be
in the global minimum of funsat, despite the fact that the
frustrated lattice is dynamical, is surprising. It suggests that

FIG. 3. Dislocations for a typical realization of N ¼ 90000
spheres in the tetratic phase (h ¼ 0.8 and ρH ¼ 0.81). (a) The
Burgers field, calculated using the DXA algorithm [36]. Dis-
location-antidislocation pairs and larger neutral clusters are
colored in gray. The remaining clusters, colored according to
the direction of the total Burgers vector of the cluster, bcluster, all
have magnitude jbclusterj ¼

ffiffiffi
2

p
. (b) Enlargement of the black

rectangle in (a). Here, individual spheres are shown in red or blue
depending on their effective spin s ¼ �1. A free

ffiffiffi
2

p
dislocation

cluster (magenta arrows) is surrounded by its Burgers circuit; the
remaining dislocations (gray arrows) appear in neutral clusters
(enclosed by gray ovals). Dashed gray lines show the bonds of the
4NN graph, used to quantify AF order; green lines are unsatisfied
bonds.

FIG. 4. Magnetic structure factor SMðkÞ. Fairly sharp peaks,
seen in the tetratic, are smeared into a ring in the liquid, indicating
strong AF correlations in both phases.
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the lattice dynamics are strongly constrained by the spin
configuration.
Before concluding, we note that the double dislocations

can also be viewed as fundamental dislocations of the AF
solid (with a two-site basis). However, this description can
break down in the tetratic, where true long-range AF
order is not established. In the tetratic, double dislocations
are not compact objects. Rather, they appear as loose pairs
of single dislocations, bound dynamically by the AF
correlations. However, if the AF correlations were suffi-
ciently short ranged then the string tension binding these
dislocations would have vanished [39]. Then, the single
dislocations would have become free objects.
In summary, we presented a novel phase, a topologically

ordered tetratic, which separates solid and liquid phases in
2D systems with strong AF interactions. We demonstrated
this phase numerically in a system of hard spheres confined
between parallel plates, which may be realized experimen-
tally using colloids. This phase has fairly sharp magnetic
Bragg peaks and saturated AF correlations, despite being
partially molten.
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