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The unique superflow-through-solid effect observed in solid 4He and attributed to the quasi-one-
dimensional superfluidity along the dislocation cores exhibits two extraordinary features: (i) an
exponentially strong suppression of the flow by a moderate increase in pressure and (ii) an unusual
temperature dependence of the flow rate with no analogy to any known system and in contradiction with the
standard Luttinger liquid paradigm. Based on ab initio and model simulations, we argue that the two
features are closely related: Thermal fluctuations of the shape of a superclimbing edge dislocation induce
large, correlated, and asymmetric stress fields acting on the superfluid core. The critical flux is most
sensitive to strong rare fluctuations and hereby acquires a sharp temperature dependence observed in
experiments.
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Introduction.—A pure (free of 3He impurities) but
structurally imperfect crystal of 4He is a highly nontrivial
system demonstrating a variety of unique phenomena
taking place at temperatures T ≲ 0.5 K that likely persist
down to absolute zero: (i) the superflow through solid
(STS) [1–8], (ii) the anomalous isochoric compressibility
(also known as the syringe effect), which is the thresh-
oldless matter accumulation inside the solid in response to
small chemical potential changes that always accompanies
the STS [1], and (iii) the giant plasticity [9]. All three
features are attributed to highly unusual and essentially
quantum properties of dislocations.
The STS effect is explained by superfluidity in the cores

of certain dislocations, as established for both the screw and
edge dislocations by ab initio path integral simulations in
Refs. [10,11]; the original idea that dislocations in 4He
might have superfluid cores goes back to the work by
Shevchenko [12]. The only existing scenario explaining the
syringe effect is based on superclimb of edge dislocations
[11]. In contrast to the conventional climb assisted by pipe
diffusion of thermally activated vacancies along the dis-
location core [13,14] (viable only at high temperature), the
superclimb is assisted by the superflow along the core. The
syringe effect persisting down to low temperatures when
thermal activation is no longer possible, as well as first-
principle simulations of edge dislocations demonstrating
superclimb, provide strong support to the minimalistic
unified scenario behind all phenomena based on the
(quantum-)rough edge dislocations with superfluid cores.

Since dislocation cores are quasi-one-dimensional
objects, it is natural to expect that their superfluid properties
fit the Luttinger liquid (LL) paradigm when at zero
temperature T the I-V curve is nonlinear (sub-Ohmic at
small bias). In agreement with the LL theory, ab initio
simulations of dislocations with superfluid cores reveal that
LL parameters remain temperature independent at T ≲
0.5 K [15]. These observations resulted in a widely shared
point of view that supertransport of 4He atoms through the
dislocation network is described by a bosonic LL [3,8].
However, at low finite T, the initial part of the otherwise
temperature-independent I-V curve in LL is supposed to
acquire an Ohmic regime characterized by high conduc-
tivity diverging in the T → 0 limit as a power law. In
contrast, experiments consistently observe a different
mysterious temperature dependence of the critical flux F
shown in Fig. 1 and, apparently, force one to look beyond
isolated dislocations and invoke properties of the disloca-
tion network (cf. Ref. [18]).
In this Letter, we argue that a single-dislocation scenario,

where F is simply a product of the critical current J along
one dislocation and a number of dislocations, is nevertheless
possible by paying attention to the higher-dimensional
nature of the problem—dislocations are defects of a three-
dimensional crystalline order. In this context, two key
ingredients become crucial: (i) thermal fluctuations of
the dislocation shape and (ii) the exponential dependence
of superfluid properties of the core on moderate changes
in pressure (more generally, the stress field around the
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dislocation core)—as observed in the experiment [5] and in
our simulations (see below). Their combination results in
rare intermittent fluctuations with dislocation segments
having strongly suppressed superfluid stiffness in what
otherwise is a robust superfluid along the core. Phase slips
in such regions limit the flux F. No other one-dimensional
system is known to exhibit a similar behavior.
Our scenario is supported by ab initio and model

simulations and explains the leading behavior observed in
experiments; see Fig. 1. In particular, we explain finite size
limitations of ab initio simulations and reveal strong
suppression of the superfluid stiffness with pressure and
temperature. Of direct relevance to experiments is, however,
the critical current, which is out of reach for ab initio
methods. We corroborate the scenario by a simplified
effective model, which captures, at least qualitatively, the
STS experiments that puzzled the community for over a
decade. Given the spread of data for samples with different
geometry, size, and growth conditions, it is natural to expect
that our modeling will need further refinements: a group of
samples from Ref. [6] follow a stretched exponential law
with parameters outside of the range supported by our
current model. In particular, our model does not capture the
low-T saturation behavior seen in these samples. It also does
not account for the sub-Ohmic dependence of the flux F on
the chemical potential bias Δμ [2,6], which we leave for
future work. The scope of the present Letter is hence limited
to the unifying picture of the pressure and temperature
dependence over a wide temperature range.

Scenario.—In solid 4He the motion of atoms or vacancies
along the dislocation core is best described by tunneling in
the periodic potential (see the sketch, Fig. 2) implying
exponential sensitivity of the superfluid properties to the
potential strength. Quantum roughness of the superfluid
edge dislocation renders thermal fluctuations of their shape
gapless and, thus, anomalously large compared to the
situation when the Peierls potential localizes the core
within a single potential minimum. Shape fluctuations of
the edge produce inhomogeneous stress fields along the
core, which, in turn, modify the local superfluid response.
Exponential sensitivity of tunneling phenomena to external
parameters, such as the local stress, amplifies the effect.
Imagine an instant shape of the dislocation line being

quenched. Transport properties of the resulting system are
best described by the strong-disorder scenario [19–21] when
special attention is paid to the statistics of rare regions
(outliers in the pressure-stress distribution) creating “bottle-
necks” that might determine the current. The dynamical
nature of thermal fluctuations does not allow us to take this
analogy literally; e.g., phase transitions at finite T are
forbidden.Nevertheless, a sharp suppressionof the superfluid
density ns and flux with temperature, see Fig. 1, is possible.
The difference between the two properties is that nsðTÞ

dependence is a purely thermodynamic effect based on a
macroscopic number of connected regions with suppressed
local superfluid response, or weak regions (WR), while the
critical current Jc (with F ∝ Jc) is not. Because of the one-
dimensional character of the system, Jc is determined by a
single WR along the line allowing phase slips. The
microscopic description of phase slips at WR goes beyond
the scope of this work. However, for qualitative comparison
with the experiment all we need are the following two
natural assumptions. (i) Jc is a product of the local
superfluid density nsðxÞ and the local critical velocity at
WR. (ii) Phase slip is a ground-state, quantum-tunneling
phenomenon often called an instanton. Smaller values of ns
lead to a smaller instanton action and, correspondingly,
smaller critical velocities. Thus, we expect that Jc scales as
a certain power (p > 1) of the local superfluid density ns at
the WR.
Here we do not consider thermal phase slips destroying

the core superfluid in the thermally activated fashion [22] at
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FIG. 2. Schematic visualization of shape fluctuations of the
edge dislocation core in the climbing plane. The incomplete
atomic plane is shown by the dark area with the core at its
boundary. The superfluid density is confined to the core (between
the dashed lines) and its local value strongly depends on the local
pressure PðrÞ (or stress).
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FIG. 1. Critical flux FðTÞ [normalized by F0 ¼ FðT ≈ 0Þ] for
differently grown 4He samples. All data points connected by thin
lines as a guide to the eye are taken from Refs. [5,6]. The dotted
line represents the master curve, Ref. [1], fitting the data collected
from multiple samples. In contrast to Refs. [5,6], the data from
Ref. [1] show no spread within ∼10%. All the data for T < 0.5 K
are consistent with the stretched exponential law exp½−ðT=TαÞα�,
α ¼ 1–1.3, predicted by our model: The thick solid lines are fits
with α ¼ 5=4 and T5=4 ≈ 0.20, 0.45 K for the lowest and the
highest datasets, respectively [5,6].
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higher temperatures. The corresponding activation energy
E0 is determined by nsð0Þ and the healing length ξ, and it
can be estimated as E0 ≈ ℏ2nsð0Þ=ðξmÞ, wherem is the 4He
atomic mass. Our ab initio simulations give E0 ∼ 5–10 K,
which is much higher than the typical energy scale ∼0.5 K
observed experimentally in Refs. [1,5,6].
Ab initio simulations.—The key assumption is the

exponential sensitivity of ns to small changes in system
parameters such as the crystal number density n. This was
verified by ab initio Worm algorithm simulations [23]
similar to those reported in Ref. [11] but at higher densities
(see the Supplemental Material [15]): Figure 3 clearly
shows that ns can be suppressed by nearly 2 orders of
magnitude with only a 10% change in n.
The largest simulated system linear size L cannot

accommodate full-scale shape fluctuations of the disloca-
tion because L does not satisfy the requirement L ≫ D0,
whereD0 ∼ 10 Å is the core diameter. However, rather than
dealing with the shape fluctuations of a long dislocation
line in an infinite ideal crystal, we can study the statistics of
position fluctuations of a short dislocation—of length
L ∼ 20 Å≳D0—within the box. Approximately, the dis-
location can be viewed as composed of straight segments of
length L, moving with respect to each other and interacting
by elastic forces. The simulation box boundaries are
formed by atoms with “frozen” spatial positions arranged
to enforce the topology of the dislocation inside the box
(see Ref. [15]). As a result, the interior is under stress
gradients with the characteristic scale L. At the qualitative
level, this arrangement mimics the effect of thermal shape
fluctuations and allows us to study how the dislocation
segment explores the nonuniform stress landscape and
changes its superfluid properties depending on the position
within the small box.

In the simulations, ns is calculated through the variance
of the winding number W [24]: ns ¼ ℏ−2mLThW2i, where
m is the particle mass, and h� � �i stands for averaging over
an ensemble of path-integral configurations. Large rare
thermal fluctuations of the dislocation position are sta-
tistically insignificant in hW2i and this is why ns stays T
independent in short samples [15]. To reveal the effect of
rare fluctuations one has to look at correlations between the
W2 and dislocation core position within the simulation cell,
which can be readily done on the basis of the one-to-one
correspondence between the edge dislocation position and
the particle number N. This correspondence is the essence
of the superclimb effect [11]: the position of the core with
respect to the crystal boundary determines the number of
extra atoms belonging to the incomplete atomic plane (the
dark area in Fig. 2). Accordingly, fluctuations of the edge
dislocation imply fluctuations of N. Note that there is no
such relation for the screw dislocation. Since N is a
constant of motion, its fluctuations are thermal, ensuring
that we are studying finite T rather than zero-point effects.
In the numerical protocol, the parameters are chosen so

that N experiences substantial fluctuations. The statistics of
hW2i is then collected separately for each particle numberN.
The corresponding quantity is denoted as hW2iN and defines
theN-dependent superfluid densitynsðNÞ¼ℏ−2mLThW2iN.
If our scenario is correct, dramatic changes in nsðNÞ between
typical and rare values of N should occur. The results are
presented in Fig. 4. For large deviations of N from its
expectation value hNi (that is, for large deviations of the core
from its equilibrium position within the simulation cell), we
observe significant (by a factor of ∼5) changes in nsðNÞ (as
comparedwithns averaged overN) for a superclimbing edge
dislocation. In contrast, the screw dislocation with the
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FIG. 3. Exponential sensitivity of the superfluid density in the
dislocation core ns to small changes in the 3D number density of
the 4He crystal n. Three different dislocations were simulated at
T ¼ 0.25 K: a screw dislocation and two edge dislocation partials
along the [1,0,0] and [0,1,0] directions labeled as X and Y,
respectively. Each data point corresponds to a different sample at
the corresponding density. For more details see Ref. [15].
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FIG. 4. Superfluid density nsðNÞ as a function of the deviation
δN of the particle number N from its equilibrium expectation
value hNi in the simulation cell for the superclimbing edge
dislocation, at T ¼ 0.5 K, and the screw dislocation with a
superfluid core, at T ¼ 1 K. The data are normalized by hnsi,
which is ns averaged over N.
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superfluid core experiencing similar fluctuations in N
(which, however, cause no core displacement) demonstrates
no dependence of nsðNÞ on N. This dramatic difference
nicely illustrates the key aspect of our scenario for edge
dislocations—the dependence on N is not due to particle
density fluctuations within the superfluid core (as is the case
for the screw dislocation), but due to the modification of the
local crystalline environment around the climbing edge
dislocation in the presence of the stress field gradients.
The same conclusion follows from the direct comparison
between Figs. 4 and 3 where both screw and edge disloca-
tions demonstrate the exponential suppression with the
crystal density n.
Model simulations.—Qualitatively, the shape fluctua-

tions of the superclimbing edge dislocation and their effect
on the superflow along its core can be studied within the
simplified effective model of an isotropic string in two
dimensions. That is, we ignore the presence of the
crystalline lattice, which induces anisotropy and the
Peierls potential. The effective Hamiltonian reads (in
the units when the interatomic distance b and the ratio
ℏ=m equal to unity)

H½φ; y� ¼ 1

2

Z
L

0

dxfnsðy00Þ½V0 þ φ0�2 þ Gy02g; ð1Þ

where the superfluid phase field φðxÞ and the dislocation
displacement field yðxÞ are canonically conjugated varia-
bles. The term ∝ G is the elastic deformation energy. We
consider the limit of small deviations of the line from its
equilibrium yðxÞ ¼ 0, that is, jy0ðxÞj < 1. Also, the line
curvature y00ðxÞ must be much smaller than 1=D0. The
kinetic energy part contains the average flux velocity V0,
and the local superfluid density,

nsðy00Þ ¼ n0 expð−gy00Þ; ð2Þ

which depends exponentially on the shape fluctuations
through the line curvature y00 (see Refs. [13,15] for addi-
tional details). It is consistent with the dependence on
pressure or density observed in the ab initio simulations
presented in Figs. 3 and 4.
Quantum mechanical simulations of Eq. (1) at finite V0

suffer from the sign problem. However, for purposes of
qualitative analysis it is sufficient to consider the classical
version of Eq. (1) with explicit temperature-dependent
ultraviolet cutoff Δx on the wavelengths of excited
modes for which quantization effects can be neglected.
We implement the cutoff by working with the discretized
version of Eq. (1) of linear size L̃ ¼ L=Δx ≫ 1 and the
noncompact field φ. Given that the spectrum of excitations
is parabolic at small momenta [11], ω ¼ ffiffiffiffiffiffiffiffiffi

n0G
p

q2 [11], we
have Δx ≈ ðn0GÞ1=4=T1=2. This treatment is valid as long
as Δx ≫ D0.

Brute-force classical simulations of Eq. (1) suffer from
severe slowing-down because optimal WR configurations
introduce strong and highly nonlocal correlations between
the fields y and φ: A bump in the former is accompanied by
a large gradient in the latter at the bump location with
reduced φ gradients everywhere else. Stochastic sampling
of optimal WR configurations thus requires an enormous
number of elementary local moves. However, for purposes
of the semiquantitative analysis, the slowing-down problem
can be solved by implementing the least-energy approxi-
mation for the field φðxÞ when φðxÞ is nothing but the
optimal solution for a given configuration of yðxÞ. In
practice, this approximation reduces to an effective energy
functional that depends only on yðxÞ, which is then
sampled stochastically. The optimal phase field solution
corresponds to the constant current condition:

J ¼ nsðy00ðxÞÞ½V0 þ φ0ðxÞ�; dJ=dx ¼ 0: ð3Þ

The superfluid density ns is computed from ns ¼ hJi=V0

in the V0 → 0 limit. The critical flux F ∝ Jc cannot be
determined from equilibrium Monte Carlo simulations.
Nevertheless, the origin of its T dependence can be traced
back to the statistics of the WR through the proposed
dependence of Jc on superfluid density in WR:

Jc ∝ hnps iW ∝ hexpð−pgy00ÞiW: ð4Þ

Here h� � �iW denotes averaging over the WR. (Note that an
alternative interpretation in terms of the Landau criterion
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FIG. 5. Superfluid density ns (dashed lines are guides to the
eye) for linear sizes L̃ specified next to each dataset. The solid
line is the fit by exp½−ðT=TαÞα�, with α ¼ 5=2 and
Tα ¼ 0.737� 0.005. Inset: the critical current Jc (normalized
to unity at T ¼ 0) for L̃ ¼ 4; 10; 102; 103; 104; 107 increasing
from the highest to the lowest dataset. The solid line is the
fit of the L̃ ¼ 104 data by Jc ∝ exp½−ðT=TαÞ5=4�, with
Tα ¼ 0.257� 0.01. All data for Jc are consistent with α ≈
5=4� 0.1 for 0 < T < 0.6 and the spread is due to Tα varying
by a factor ∼2 (cf. Fig. 1).
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for stability of the superflow is also possible [15].) The
results of the simulations for ns and Jc with p ¼ 2 are
presented in Fig. 5 (see also Fig. 1), with further technical
details delegated to the Supplemental Material [15].
Conclusions and outlook.—Superflow-through-solid

experiments exhibit a highly unusual temperature depend-
ence of the critical flux (see Fig. 1) that does not conform
with the standard Luttinger liquid theory expected to work
within the otherwise consistent and numerically corrobo-
rated picture of superfluidity confined to dislocation cores.
Our scenario provides an explanation: the one-dimensional
superfluid channel is an inseparable part of the crystalline
host and its shape fluctuations induce pressure-stress and
density fluctuations modifying properties of the edge
dislocation core (see Fig. 4). Since superfluidity comes
from tunneling motion of core atoms in the periodic crystal
potential, the net result is an exponential dependence of ns
on small changes in P, and, consequently, in combination
with the thermal fluctuations—on T.
The long-wave physics of rough superfluid edge dis-

locations is captured by the effective model (1). It reveals
the effect of rare shape fluctuations on the superfluid
density and emphasizes a nearly classical nature of these
fluctuations up to two quantum effects: (i) the UV cutoff on
the wavelength of shape fluctuations and (ii) the value of
the largest ground-state flux limited by phase slips
(this quantum-tunneling phenomenon still remains to be
understood).
The sharp temperature dependence of the critical flux is

attributed to a single weakest region along the dislocation.
Phenomenological treatment based on the assumption that
the critical flux scales as a certain power (larger than one) of
the local superfluid density at the weakest element allows
us to reproduce experimental results at T ≤ 0.5 K; see
Fig. 1. At higher temperature the data in Fig. 1 decay faster;
this can be accounted for by considering the contribution of
bulk phonons to shape fluctuations, which leads to
lnðF=F0Þ ∼ −T2 [15].
The quantum treatment of Eq. (1) is of fundamental

interest on its own because it describes a new type of the
quasi-1D superfluid—not accounted for by the Luttinger
liquid paradigm.
The inset in Fig. 5 demonstrates weak (logarithmic)

suppression of the critical flux with increasing the dis-
location length. A similar suppression of the flux with the
sample size has been reported in Ref. [6]. This motivates
further experimental studies of the STS effect in single
crystals with variable distance between the Vycor “electro-
des”. If crystals can be grown with predominantly screw
dislocations, the genuine Luttinger liquid behavior can be
revealed through the temperature-independent supercritical
flux (at low temperature).
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