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Observations of powerful radio waves from neutron star magnetospheres raise the question of how
strong waves interact with particles in a strong background magnetic field By,. This problem is examined
by solving the particle motion in the wave. Remarkably, waves with amplitudes E, > By, pump particle

energy via repeating resonance events, quickly reaching the radiation reaction limit. As a result, the wave is
scattered with a huge cross section. This fact has implications for models of fast radio bursts and magnetars.

Particles accelerated in the wave emit y rays, which can trigger an e avalanche and, instead of silent

escape, the wave will produce x-ray fireworks.
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Introduction.—Magnetized compact objects are capable
of generating strong electromagnetic waves of low frequen-
cies w. In particular, pulsars and magnetars produce bright
radio emission, and magnetars are thought to be the source
of fast radio bursts (FRBs) [1,2].

A strong background magnetic field By, is believed to
suppress the plasma response to the wave electric field E
when E_L1B;,. This allows the linearly polarized radio
waves to freely propagate through the magnetospheric
plasma even when o is far below the plasma frequency.
A standard calculation of the cross section for wave scatte-
ring by a magnetized electron gives o, ~ (0/wg)*6r < o7
[3], where wp is the gyrofrequency and o7 is the Thomson
Ccross section.

However, the standard analysis fails for waves with
amplitudes E, > By,, and this regime is inevitably encoun-
tered as a strong wave packet propagates away from the
magnetized star, in the decreasing Byp,. Note that both
conditions By, < Ej and wp > w may be expressed as

eEO
apg = s
mcw

(1)

wp
1<—<Cl0,
w

where e and m are the electron charge and mass. Low-
frequency waves can have enormous a;. For instance, FRB
models picturing a GHz source of luminosity L ~
10* erg/s at radii R < 10% cm have E} =2L/cR* and
ay ~ 10°Rg". The wave encounters regime (1) in the outer
magnetosphere R > 3 x 108 cm where By, R~ drops
below E, [4]. We find below that regime (1) triggers quick
stochastic acceleration of particles in the wave, and o
becomes huge.

Method.—Let us consider a wave packet propagating
along Z in an initially static magnetized plasma of low
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density, and calculate the particle motion in the packet.
It obeys the dynamical equation for velocity v = fic or
four-velocity u* = (y,u) (where u = yp):

u
e = oE+px BBy S ()
where f is the radiation reaction force. Relevant scales in
this dynamical problem are microscopic compared with the
scale R of the background field variation, so By, can be
approximated as uniform. The simple case of By, = 0 has
been extensively studied in laser plasma physics [5]. The
particle motion was also solved for circularly polarized
waves propagating along By, # 0 [6]. In these cases, the
stochastic pump effect described below disappears.
The wave fields E and B depend on &{=1t—-z/c
and are described by the dimensionless potential
a=eA/mc* = [a(£),0,0]:

eE da eB da

—=(-—.0,0), —=(0,——.0). (3

mc ( dé > mc ( dé ) (3)
We choose & = 0 at the leading edge of the wave packet, so
it propagates at £ > 0 (and a = 0 at £ <0). In numerical
examples we will use a modulated sine wave with ampli-
tude rising linearly at 0 <& < &, and then staying
constant in the packet: E(&) = E, sin(w¢).

Consider a particle initially at rest before the wave
(=0 at £ <0). The wave overtakes the particle with
relative speed dé/dt =1 — f_, and we define

dé dt
=—= 1-— =y — s d = —. 4
u§ dr 7( ﬂz) 4 uz T y ( )
Note that the wave potential a varies along the particle
worldline with da/dr = —(eE/mc)u;. We also define
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Two types of particle motion in strong waves (Ej > By,), illustrated using a wave with ay = 30 and &, = 150(27/w). The

leading edge of the wave packet is at £ = 0; the particle’s coordinate £ = r — z/c grows with time to the left. Left: wz = 10w. One can
see large || > |Au| pumped by resonances that happen every Larmor time &; ~ f; = 2z/w; . One of the resonances is indicated by the
vertical dotted line. The behavior of #* near the resonance is also shown as a function of proper time 7. Right: @z = 0.2w. Then, the
motion has |#| < |Au| and remains regular (doubly periodic in &, with fast w and slow @; = wg/7). The large number of w oscillations
shown in the figure (N = 600) merge, forming the black stripes, whose thickness demonstrates the oscillation amplitude |Au| ~ a,. The

o oscillations of u; are small (the red stripe is thin).

EBbg

= (0, wg sin O, wg cos @), 0#0. (5

Wp =
mc
The case of § = x/2 is particularly simple—then the wave
does not excite uy, i.e., u = (u,,0,u,).
We first examine particle motion without radiation
reaction, f ~ 0. Then, Eq. (2) gives

dU, . . du, du,

— 2 Y — Y — 2
e = @plly, — Wpl,, E——a)Bux, —— = WglUy,

dr
(6)

where U, = u, + a. Variables (Ux,ué,uy) determine all
components of u* (using w'u, = —1). We solve Eq. (6)
with initial conditionsu = 0, U, = 0, and us = laté=0.

When By, = 0, the solution is trivial: U, and u; keep
their initial values, which yields

= —da, ., = —, :] — . 7
uy, a Uy = Y +2 (7)

This motion is well known, although it is usually viewed
in the center-of-momentum frame K’ where the average
i, = 0 and the particle executes an eight-shaped orbit [7].

For waves with Ey < By, the particle motion is also
known: it oscillates in the wave with small |u| ~ Ey/By,.

Hereafter we focus on waves with E, > B, # 0. Then,
we find that the particle motion is a superposition of fast @
oscillations in the wave with amplitude |Au|~ aq and a
slower Larmor rotation of & (averaged over the w oscil-
lations) in the average field B + By, = By,,. In particular,
Au, = ag and u, = U,.

Figure 1 shows sample solutions demonstrating two
types of motion: |&| > |Au| (found when @ < wp) and
1| < |Au|. Both solutions were calculated for the same
wave [ay =30, & = 150(27/w)], but with different
wg = (0,10w,0) and wg = (0, w/5,0).

Waves with @ < wg.—In this case, the gyration of & in
B, develops a huge amplitude ||~ 7 > |Au| ~ ay, and
the particle’s motion becomes dominated by Larmor
rotation with frequency w; = wp/7 < @ (Fig. 1, left).
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We observe that || is pumped in nearly impulsive events
that occur every Larmor rotation. These events are reso-
nances where the particle exchanges energy with one wave
oscillation 6 ~ w~!.

The resonance may be described as follows. The wave
oscillation along the particle’s worldline resembles an
oscillator with a changing frequency w,, = (1 — f,)w. It
becomes slowest near moment f, where f, ~ 1 is near its
maximum and u; ~ 0 is near its minimum (then the particle
moves almost together with the wave). Gyration of u ~ ut
gives . = cos oy and w,, ~ w(dy)?/2, where Sy = w; 5t
and 0t = t — ty. The resonance occurs when

0,0t ~ 1 = O eg = @ Oleg ~ (a)L/a))l/B' (8)

The obtained 6y, determines the characteristic u; =
y(1 = p.) and u, during the resonance,

2\ 1/3 res 2/3 3
w u anw
g~ (22) () = 52

w a  \7« wp
These expressions assume u's® > a, which requires y > y,
(then u'™ ~ U = —ysindy,,). One can verify that
wp /@ = (7./7)(Byg/ E0)** < 1 and Sy < 1.

Gain dy from the resonance event may be found from
dy/dt = eEu,/mc and du;/dr = —wgu,, which gives

—_——— y =——
dug Bbg Bbg

sin(w6 + ¢p)dug.  (10)
Here ¢ is the (practically random) phase of the wave at the
particle’s location at time 7). Note that u; is even in 6&
during the resonance, near the minimum u:. Hence, the odd
part of sin(wd¢ + ¢), i.e., sin(wdE) cos ¢, determines the
integral and oy ~ —u*(Ey/By,g) cos ¢. This result may be
stated as

Sym—=H(yri)'Pcos¢  (r>7.) (11)
Exact integration gives the coefficient H ~ 2.6 (Fig. 2). If
the particle approaches the resonance with y < y,, it gains
8y ~7,. As the resonances repeat every &, ~ t; = 2x/w;,
the particle performs random walk in y to y > y,. The wave
acts as a stochastic “pump” that can accelerate the particle
to arbitrary high y (limited only by radiative losses
discussed below). The deterministic particle motion gives
the chaotic walk in y because dy is sensitive to ¢. It remains
regular in repeating resonances every gyration.

The presented calculation assumes 6 = /2 (wave
propagation perpendicular to By,). Similar integration of
Eq. (2) at @ < x/2 also gives pumping of y, with additional
sliding of the particle along the oblique By,,. One can boost
the reference frame along By, so that the wave propagates
perpendicular to By, in the new frame K’, and see that the

pump works as described above, with o'/w) =
(w/wpg) sin@. The initial condition # =0 is changed to
B # 0 after the boost, however this change is unimportant
unless 6 < 1.

Waves with @ > wg.—In this case, the particle moves
with |i2| < |Au/| in slowly rising waves, &, > ao/@p. The
resulting motion at £ > &, is periodic, with no pumping
effect (Fig. 1, right).

2| can be derived analytically. Let us average the energy
equation mcdy/dr = eEu, over the w oscillations:

d7 e . dad
Yl FU.-FEa)n 2L 12
e ye e (EUx = Ea) dE 2 (12)

Here we used eEa/mc = —ada/d¢ and neglected EU, =
U.E,sin(wé) since U, E, varies slowly and sin(wé&) = 0.
Dynamical equations for u, and u, may be written as one
equation for complex u = u, + iu,. After averaging, it
becomes

dii 1da®> 1dd?
—xiwgh + iF, F=-——~_—0, 13
de > estt sae Yaae P
The Larmor rotation of # is excited where the wave rises,
F # 0, and the solution of Eq. (13) during the rise is

e~ i/T e s F(¢)dd ~ _
0

Wp

<1

(é < grise)v (14)

where the second equality uses the slow-rise approximation
(we integrated by parts and neglected dF/dr < wgF).
Then, from du:/dr ~ —wgii, ~ F = dy/dz, we find u; = 7,
and Eq. (12) yields 7? ~ 1 + a3/2. At & > &4,

2 2 iy

_ | a5y - age I

yrA L+ am . us~y—|u|sing, (15)
2 2opbie’

where y = wg(7 — 7, ). This analytical result agrees with
the numerical solution.

One can also evaluate the integral in Eq. (14) when
Eise < ag/wp. Then, we find periodic motion at & > &
with [&] ~ (a5/@p&ise) /> > |Au| ~ a.

Radiation reaction limit (RRL).—A relativistic electron
in fields E and B + By, emits momentum with rate [7]

Femme = 1 {l7E +ux (B+ Byg)* = (u-EP}.  (16)

We now retain f = —y,,,mv in the dynamical Eq. (2). For
waves with Eq 3> By, femmc simplifies to o7 E*uz /4, and
averaging over @ oscillations gives
2
z Fe 2 2 2 ¢
X — Az Uz, r,=—->. 17
yem 3C 0 & e mc2 ( )
In waves with @w < wp, the resonant pumping of y
quickly reaches RRL (Fig. 2), and random walk continues
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FIG. 2. Same model as in Fig. 1 (wgp = 10w), but now with
radiation reaction. We chose r.w/c = 10~*w3/ajw?, which
gives yrrr. & 1370 (horizontal dashed line). The evolution of 7
consists of stochastic jumps 8y (resonances) followed by gradual
losses. Bottom: dy vs wave phase ¢ at the resonance. The result
confirms Eq. (11) with H ~ 2.6 (dotted curve).

with a ceiling yggpr. Losses occur with (u2) = 2(y?)
(averaged over gyration), and balance the maximum
resonant gain 8y = H(yy2)'/? when (y.n)t;, = &y. This
gives [using Eq. (17)]

a,\15/8 3H ¢ \3¥8[wp\ /4
YRRL = Vi | — =|-—= — (18)
ao 4z r,wag 0]

This result holds if yrry > 7., 1.€., if

3Hcw3\ '3 15 (w3
apg < a, = <4ﬂrea)3> ~ 400vgy, (;) (19)

where v = w/2x is normalized to 1 GHz. (If ay > a,,
losses completely suppress diffusion in y.)

The timescale for reaching RRL is frgr. ~ (Yrei/07)%t1,
which gives wigyy /2 ~ H™2(Eo/Byg)*/?(a,/ag)*/8. For
a bright FRB, fgg; is shorter than the FRB duration
(~1 ms), so the wave pushes particles to the RRL.

When @ > wg, we find that the radiation reaction is
negligible if ¢ =ajr,w/c < 1; then the particle keeps
y ~ap. If ¢ > 1 then y grows (Fig. 3), because u; develops
w oscillations and radiative losses become asymmetric in
phase, inducing a rocket effect.

Initial temperature T # 0.—A simple way to see the
statistics of chaos realizations in a wave packet with o <
wp is to draw an ensemble of test particles from an initial
Maxwellian distribution with some 7' # 0. We followed 10*
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FIG. 3. Development of radiation reaction with increasing ¢ in
waves with @ > wp. Averaging (...) is performed over a time
longer than the particle gyration in Byg; fem = (7)/(7em)- The plot
was constructed by solving a sequence of models with varying
r.w/c at fixed ay = 30 and wz = 0.1w; however, the same result
holds for other choices of gy > 1 and wp < w.

particles and observed evolution of their distribution
function f(y) in the wave. Figure 4 shows the evolution
of ensemble average (7)., for three models with
kT /mc? = 0.01 and 1. As chaos develops, (7)., is pumped
to high values, losing memory of the initial 7. The observed
growth of (7)., & &/7 /7 is consistent with the simple
diffusion estimate of the characteristic y> ~ Dt where
D(y) ~ ([6y)?)/t, « y~'/3 (Eq. (11)). Radiative losses off-
set acceleration at (y).,s X YrrL/2-

Scattering cross section c..—Time-averaged emitted
power Egn = (Jem)mc? determines the scattering cross
section of the particle 6y, = Eun/F, where F = cE}/8%
is the wave energy flux. Equation (17) gives o, ~ (u?)ar.
If By, = 0, the particle keeps u; = 1, and so 6. = o7. This
is changed when By, # 0.
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FIG. 4. Wave pumps (y).,s of a particle ensemble with initial
T #0 (ay = 30, &5 /27 = 10, wg = 10w). Three models are
shown: with no radiative losses for 7' = kT /mc* = 0.01 (blue)
and 1 (black), and with losses for T = 1, yrpr, = 1370 (red).
Black dotted line shows the acceleration law (y),,, o &/7.
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It is particularly interesting to look at o, for @ < wp.
Then, (uZ) ~ yggy- A characteristic 63, may be defined with
ag = d,:

* 3/5 1/5 1/5
() () () e
T 7, 0] 0]

Recall that this result holds for Ey > By,. If E; is reduced
below ~Byg/2, o, would drop to (w?/w})or.

Energies of emitted photons.—The emitted power
Yemmc? is carried by curvature radiation with the spectrum
extending to a characteristic frequency w, ~ (3/2)y’c/r.,
where 7! = (3En/2cr,y*)1/? is the curvature of the
particle trajectory [7]. Substitution of Eq. (17) gives

a)C
g ~ a()]/bl}n:. (21)

When o > wg, we find (yu;) ~ af (Fig. 3) and o, ~ aj.
For < wp, we use (yug) ~ 2rgg, and Eq. (18) to get

ho, 1 (rowkag)\'*  [ag\'/*
SR— | —— =er|— , (22)
me? a\ co a,

1 3\ 1/5 3/5
€~ — (rea)f) ~0.3 (@) vlo, (23)
w

a \ cw

where a = e?/hc. Waves with @ < wp generate photons
with w, > m,c* capable of e* creation.

Discussion.—Strong low-frequency waves (Eq. (1)) offer
a novel mechanism for particle acceleration near astro-
physical compact objects. It differs from stochastic accel-
eration by plasma turbulence, where particles gain energy
from interactions with many plasma modes [8]. The wave
induces a peculiar resonance with the particle motion
(without fine-tuning @) which repeats nearly impulsively
at a specific gyration phase y with a random wave phase ¢,
giving random energy boosts to the particle. This behavior
is an incidence of chaos development in nonlinear dynam-
ics. Different examples of chaos in plasma waves with a
magnetostatic background are found in Refs. [9-12];
chaotic motion in electrostatic waves was particularly well
studied [13]. Ultrastrong radio waves in regime (1) provide
a remarkable new example, which admits a simple descrip-
tion presented in this Letter.

Reproducing this acceleration mechanism in the lab is
difficult. Reference [14] considered particle acceleration in
a laser beam with a( 2 1 propagating across a static By,
with a Larmor radius r; = ¢/w; exceeding the beam size.
Reaching a small r; and the conditions in Egs. (1) or (19) is
difficult because of limited By, accessible to experiments.
Another experimental setup engineers a slow wave (phase
speed vy, < ¢) trapping particles at wave phases ¢ where
E > |B — By, [15,16]. This surfatron accelerator is not

realized in a neutron star magnetosphere (the radio waves
have vy, > ¢). Instead, stochastic acceleration described in
this Letter results from many short resonances with random
¢, repeated every Larmor rotation in B,,.

Strong waves accelerate protons as well as electrons. The
RRL energy scales with the particle mass as m>/2; however,
reaching this limit takes time fgg; o m’/2. Therefore, ion
acceleration (to be studied in future work) will be limited
by exposure to the wave rather than fyp;. Future work
should also extend our calculations to nonplanar waves
with a finite beaming angle 6,; we expect the plane-wave
approximation to hold if 6, < .

The quick acceleration of electrons in a strong radio
wave has important astrophysical implications, which will
be investigated in detail elsewhere. Curvature emission
with Aw, > m,c* will lead to an e* avalanche capable of
powering observed x-ray bursts from magnetars. Magnetar
quakes first excite low-frequency Alfvén waves, whose
nonlinear interactions generate strong radio waves in the
magnetosphere [17-19]. Our results suggest that these
waves do not silently escape, as usually assumed.
Instead, they will generate powerful e* fireworks in the
outer magnetosphere where By, < E,. Similar waves are
expected in a magnetized neutron star binary before its
merger, and the resulting e* fireworks may be observed as
an x-ray precursor of the merger.

Strong implications are inevitable for FRB models that
picture a bright GHz source near a magnetar. The accom-
panying paper [4] shows that the FRB will experience
enormous scattering in the outer magnetosphere, failing to
pass through radii R = 10° — 10'° cm. This implies that
observable FRBs must be emitted by relativistic ejecta from
the magnetosphere.

The analysis of particle dynamics in ultrastrong waves in
this Letter assumed that the wave propagates with the
vacuum speed vy, = ¢ (Eq. (3)), neglecting any collective
plasma effects on the propagation speed. Collective effects
(in particular wave dispersion, v, # ¢) are discussed in
Ref. [4]. In main applications, dispersion turns out negli-
gible compared with wave damping due to scattering by
individual particles, which is an interesting special feature
of ultrastrong waves. In particular, FRBs are choked by
scattering in a plasma of modest density, when deviations
of vy, from c are still negligible.

This work is supported by NSF Grant No. AST 2009453,
Simons Foundation Grant No. 446228, and the Humboldt
Foundation.
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