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The magneto-Rayleigh-Taylor instability (MRTI) plays an essential role in astrophysical systems and in
magneto-inertial fusion, where it is known to be an important degradation mechanism of confinement and
target performance. In this Letter, we show for the first time experimental evidence of mode mixing and the
onset of an inverse-cascade process resulting from the nonlinear coupling of two discrete preseeded axial
modes (400- and 550-μm wavelengths) on an Al liner that is magnetically imploded using the 20-MA,
100-ns rise-time Z Machine at Sandia National Laboratories. Four radiographs captured the temporal
evolution of the MRTI. We introduce a novel unfold technique to analyze the experimental radiographs and
compare the results to simulations and to a weakly nonlinear model. We find good quantitative agreement
with simulations using the radiation magnetohydrodynamics code HYDRA. Spectral analysis of the MRTI
time evolution obtained from the simulations shows evidence of harmonic generation, mode coupling, and
the onset of an inverse-cascade process. The experiments provide a benchmark for future work on the
MRTI and motivate the development of new analytical theories to better understand this instability.
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Introduction.—The magneto-Rayleigh-Taylor instability
(MRTI) [1,2] is a ubiquitous phenomenon in astrophysics
[3,4]. It plays an important role in the development of
plumes in solar prominences [5] and filaments in the solar
corona [6] and in the Crab Nebula [7,8]. This instability is
also important in laboratory pinch plasmas such as those in
magneto-inertial fusion, wire-array z-pinches, and equa-
tion-of-state studies [9–11]. In these applications, the MRTI
occurs when a load plasma (which acts as a heavy fluid) is
accelerated by a magnetic pressure (which acts as a light
fluid). Like the classical Rayleigh-Taylor instability (RTI),
this configuration is unstable [12]. In the case of the
Magnetized Liner Inertial Fusion (MagLIF) platform
[13–16], which uses high magnetic pressures to compress
a fuel plasma to thermonuclear conditions, the MRTI can
compromise the inertial confinement and degrade perfor-
mance of MagLIF implosions [17].
The MRTI in laboratory z-pinch plasmas includes

several physical effects that are absent in the classical
RTI, for example, convergent imploding geometry, liner
shells with finite thickness, inhomogeneities in the mag-
netic pressure, magnetic diffusion, Ohmic heating of the
materials, and ablation. Several experiments have been
published studying the MRTI growth on the 100-ns time-
scale. For example, single-mode seeded MRTI experiments
were reported in Refs. [18,19]. Unseeded MRTI growth
was investigated in cylindrical liners [20,21] and planar
slabs [22]. Helical MRTI modes spontaneously emerge in

smooth cylindrical loads when applying an axial magnetic
field [23–26], which demonstrates the importance of
magnetic tension effects unique to the MRTI.
This Letter presents a series of experiments investigat-

ing the growth and interaction of two MRTI modes
initially seeded on the outer surface of an imploding
shell. Experimental radiographs show evidence that a
finite number of discrete initial modes lead to nonlinear
harmonic generation and an inverse-cascade process,
i.e., the transfer of energy from small to large scales, as
was predicted previously [27]. We obtain good agreement
when comparing the radiographs to those found using the
radiation magnetohydrodynamics code HYDRA [28,29].
To quantitatively compare the experimental results to
simulations and to a weakly nonlinear model, we develop
a novel technique that uncovers the underlying trans-
mission contours of the experimental radiographs
accounting for the nonzero probing angle of the x-ray
backlighter diagnostic.
Experiment setup.—Cylindrical liners were imploded

using the 20-MA, 100-ns rise-time Z Machine at Sandia
National Laboratories. The liners were made of Al-1100
alloy and were placed inside an eight-post, 26-mm inner-
diameter return-current structure. The outer surfaces of the
liners were machined with two periodic perturbations so
that the initial outer radius was

RðzÞ ¼ R0 þ A0½cosðk1zÞ þ cosðk2zÞ − 2�; ð1Þ
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where R0 ¼ 3.168 mm is the unperturbed outer radius,
ki ≐ 2π=λi are the mode wave numbers, and z is the axial
coordinate. The wavelengths of the two initial modes were
λ1 ¼ 550 μm and λ2 ¼ 400 μm, which correspond to
k̄1 ≐ k1=ð2πÞ ¼ 18.1 cm−1 and k̄2 ≐ k2=ð2πÞ ¼ 25 cm−1,
respectively. Both modes had the same initial amplitude
A0 ¼ 10 μm. (The instability starts in the linear growth
regime.) Preshot characterization of the outer surfaces of
the liners showed that local deviations from Eq. (1) did not
exceed 2.0 μm along the field of view of the instrument
(see Fig. 1). The inner radius of the targets was 2.876 mm.
An on-axis, 1-mm-radius tungsten rod was fielded to limit
self-emission radiation at stagnation.
Experiment results.—The MRTI evolution was diag-

nosed using a two-frame, 2-ns pulse-width monochromatic
6.151-keV backlighting diagnostic with 15-μm resolution
[30]. Four radiographs were taken at t ¼ f3041; 3057;
3065; 3077g ns in two experimental shots (z2525 and
z2556). The shot-to-shot difference between the measured
currents was less than 2%. The cross-timing error between
the radiographs and the measured currents is �1 ns. The
magnification error of the images is�3% and can vary shot
to shot. The radiograph backlighter has�3° viewing angles
for the first and second frame of each shot. Figure 1 shows a
raw radiograph obtained at 3077 ns. The perturbations were
azimuthally correlated with small differences appearing
near the MRTI bubbles (innermost radial perturbations).
Simulations.—To help interpret the experimental data,

we performed simulations using HYDRA, a massively
parallel arbitrary Lagrangian-Eulerian radiation, resistive-
diffusion, magnetohydrodynamics code [28,29]. HYDRA is
one of the main design codes for MagLIF experiments
[31–33]. The simulations were done in 2D rz cylindrical

geometry. Radiation was modeled using multigroup dif-
fusion. For the Al material properties, we used the LEOS

equation-of-state table 130 [34] and the quantum Lee-
More-Desjarlais conductivity table 29373 [35]. The sim-
ulation had initial resolution of 10.1 and 2.1 μm in the axial
and radial directions, respectively. The runs were driven
using the currents in Fig. 1.
Comparison of experiments and simulations.—Figure 2

compares enlarged images of the experimental radiographs
and the synthetic radiographs generated from HYDRA

simulations. The simulations reproduce the large-scale
features of the experimental radiographs, particularly the
shape and orientation of the bubbles and spikes. Note that
the last radiography frame shows some bubble regions
already colliding with the coaxial tungsten rod.
Small-scale discrepancies appear in Fig. 2. The plasma

jets near the bubble regions at 3057 and 3065 ns likely
originate from the surface roughness of the Al alloy,
micron-scale scratches, pits, or metallic inclusions [36].
All can seed the electrothermal instability (ETI) [37] and
lead to a local enhancement of Ohmic heating and ablation
of the liner surface [38–41]. In the last two radiographs, the
differences appearing near the bubble regions may be due
to the ETI and machining imperfections of the liners. In
Fig. 1, the largest measured deviations for the z2556 load
were 1–2 μm in size and were located near the valley
regions of the nominal perturbation. When initializing the
simulations with the experimentally measured liner surfa-
ces, we obtained minor qualitative improvements in the
MRTI evolution (not shown).
To find the underlying transmission contour without the

�3° viewing-angle effect, we used a novel unfolding
technique that models the plasma as a series of coaxial,
opaque disks of radius Rj located at z ¼ Zj. When tilted by
an angle θ, a disk contour becomes an ellipse obeying
ðr=RjÞ2 þ ½ðz − ZjÞ=ðRj sin θÞ�2 ¼ 1. For each disk, Rj is
the maximum radius such that the corresponding ellipse lies
within the 25%-transmission contour of a given radiograph.
The unfolded contour without viewing-angle effects is
found using RunfoldðZjÞ ¼ Rj. We tested this unfold tech-
nique against simulations and found good agreement for
cases with small MRTI growth. (Unfolded contours are
overlaid on top of the simulated density plots in Fig. 4.)
However, this analysis technique breaks down when the
MRTI becomes large or when a single-valued function
cannot represent the plasma contour.
The unfolded contours of the experimental radiographs

are nonperiodic within the field of view. To make a
quantitative comparison to the unfolded contours of the
simulations, we used a least-squares spectral analysis
(LSSA) technique to calculate the corresponding Fourier
spectra [42,43]. For the LSSA, we used sine and cosine
functions resulting from one to four mode combinations of
the mother k1 and k2 modes that are expected from weakly
nonlinear (WNL) theory [44–47]. Twenty modes were

(a)

(b)

(c) (d)

FIG. 1. (a) Delivered current with radiograph times overlaid as
vertical bars. (b) Photograph of the liner with machined pertur-
bations. (c) Blue: nominal perturbation in Eq. (1). Red and
orange: surface deviations [magnified by 10(×)] of machined
targets z2525 and z2556 measured by Coherence Scanning
Interferometry. (d) Experimental radiograph at 3077 ns.
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included, and the maximum wave number allowed was
4k̄2 ¼ 100 cm−1. Figure 3 compares the LSSA spectra of
the unfolded contours of the radiographs taken at t ¼
3065 ns (before the inner portions of the liner have collided
with the central rod). Quantitative agreement is found for
the largest amplitude modes. The mother k1 and k2 modes
have, respectively, grown to 250 and 330 μm in amplitude,
which correspond to growth factors of 25ð×Þ and 33ð×Þ of
their initial amplitudes (A0 ¼ 10 μm). Figure 3 shows
harmonic generation of new daughter modes. The ampli-
tudes of several daughter modes are larger than the initial
amplitude of the mother modes. Notably, the k2 − k1 mode
has the largest amplitude of the daughter modes and
provides experimental evidence for the onset of transfer

of energy from small scales to large scales, i.e., an inverse
cascade occurring from the nonlinear coupling of discrete
initial MRTI modes.
Discussion of MRTI dynamics.—Figure 4 shows the time

evolution of the liner density and of the Fourier spectrum of
the liner mass per unit length m̂ðt; zÞ ≐ 2π

R
∞
0 ρðt; r; zÞrdr.

At 3041 ns, the amplitudes of the k1 and k2 modes have
increased 4ð×Þ and 5ð×Þ, respectively, compared to their
initial values (5.34 mg=cm) [48]. The k2 mode grows faster
than the k1 mode since the linear MRTI growth rate
increases with wave number: γkðtÞ ≃ ðkjR̈jÞ1=2, where
R̈ðtÞ is the liner acceleration. The spectrum shows har-
monic generation of new modes with wave numbers
k2 − k1, 2k1, k1 þ k2, and 2k2. These are “first-generation”
daughter modes since they are the first modes expected to
appear from the mother k1 and k2 modes in WNL RTI
theory [44–47]. At 3057 ns, the spectrum shows new
“second-generation” daughter modes. For example, to
lowest order, the daughter k1 þ 2k2 mode can appear from
the coupling of the ðk1; 2k2Þ or ðk2; k1 þ k2Þ modes. At
3065 ns, the MRTI has entered the nonlinear phase with the
maximum peak-to-peak amplitude of the perturbations
being ∼0.7 mm. The k2 mode, which previously had the
largest amplitude, is now smaller than the k1 mode. The
second-harmonic 2k2 daughter mode has disappeared.
These observations suggest that saturation mechanisms
and nonlinear mode interactions are at play. The emergence
of the k2 − k1 mode, which can only appear when the two
modes are initially seeded [27], and the larger amplitude of
the k1 mode indicate that energy is being transferred to the
larger scales suggesting the onset of an inverse cascade.

FIG. 2. Left column: enlarged images of the obtained experimental radiographs. The diagnostic has a 4-mm axial field of view. Right
column: synthetic radiographs obtained from HYDRA using the initial perturbation in Eq. (1). The radiographs were calculated using the
cold opacity of Al at 6.151 keV (102.6 cm2=g). The 25%-transmission contours of the experimental radiographs are overlaid in red.
Good qualitative agreement is obtained.

FIG. 3. LSSA amplitudes (in logarithmic scale) of the unfolded
transmission contours inferred from the radiographs at 3065 ns.
Blue error bars correspond to differences between the left- and
right-hand sides of the experiment radiographs. Horizontal gray
dashed line indicates the amplitude that can be measured to 30%
uncertainty due to the fitting error.
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Comparison to weakly nonlinear theory.—The early
MRTI growth can be approximately described using the
WNL model of Ref. [47] extended to two initially seeded
modes. This model considers a single, planar interface
separating the plasma fluid and magnetic field. The fluid is
assumed perfectly conducting, incompressible, and irrota-
tional. The WNL coupling between the modes ka belong-
ing to the set K ¼ fk1; k2; 2k1; 2k2; k1 þ k2; k2 − k1g can
be described by a least action principle δΛ ¼ δ

R t1
t0 Ldt ¼ 0.

Here, L ≐
P

ka∈K Φkadξka=dt −H is the Lagrangian of the
system, ξkaðtÞ denotes the cosine amplitude of the ka mode
of the outer surface perturbation, and ΦkaðtÞ is the
canonical momentum conjugate to ξka . The function
Hðt; ξka ;ΦkaÞ is the Hamiltonian of the system and is
given by

H ≐
X
ka∈K

�
ka
2
Φ2

ka
−
jR̈j
2

ξ2ka

�
−
k31
8
ξ2k1Φ

2
k1
−
k32
8
ξ2k2Φ

2
k2

þ 1

2
k21ξ2k1Φ

2
k1
þ 1

2
k22ξ2k2Φ

2
k2

þ k1ðk2 − k1Þξk2Φk2−k1Φk1 þ k1k2ξk1þk2Φk1Φk2

þ 1

4
k21ðk2 − k1Þξ2k2Φ2

k1
−
1

2
k21k2ξk1ξk2Φk1Φk2 : ð2Þ

From Eq. (2), we can identify the leading-order inter-
actions between the MRTI modes. The quadratic terms
inside the sum correspond to kinetic and potential energies.
These terms describe the linear growth of each individual

mode [47]. The remaining terms in the first line are
nonlinear self-coupling terms for the k1 and k2 modes.
The terms in the second line couple the k1 and k2 modes
with their second-harmonic 2k1 and 2k2 daughter modes.
These first nonlinear terms are responsible for the satu-
ration of the mother k1 and k2 modes [44–47]. The
remaining nonlinear terms represent couplings between
the k1, k2, k1 þ k2, and k2 − k1 modes. In particular, the
first term in the third line is the main driver for the k2 − k1
mode. Hamilton’s equations are obtained by varying the
action Λ with respect to ξka and Φka :

_ξka ¼ ∂H=∂Φka ;
_Φka ¼ −∂H=∂ξka : ð3Þ

We numerically solved these 12 equations using a fourth-
order Runge-Kutta integrator. The liner acceleration R̈ðtÞ
was obtained using a thin-shell model [18,19].
Figure 5 shows the time evolution of the mother and

first-generation daughter modes. The experimental points
and the simulation results show good agreement. Excluding
the ablation phase of the liner surface (t ≃ 3015 ns), the
WNL model reproduces the early growth of the mother
modes until t≲ 3045 ns. There is also a partial agreement
for the amplitude of the k2 − k1 mode. However, the theory
overpredicts the growth of the higher k modes: 2k1,
k1 þ k2, and 2k2. A probable cause is the absent second-
generation daughter modes, which can act as energy sinks
for the (2k1, k1 þ k2, 2k2) modes and limit their growth.
Beyond t≳ 3045 ns, the mode amplitudes become large
causing the WNL perturbation theory to break down. In
Fig. 5, this manifests as a sudden change in the mother-
mode amplitudes and as an unbounded growth of the higher
k modes. This shortcoming of WNL theories cannot be

FIG. 5. Time evolution of MRTI amplitudes. Solid lines: LSSA
amplitudes of the unfolded contours of the synthetic radiographs.
Dashed lines: amplitudes ξka obtained by solving Eqs. (3).
Diamonds: LSSA amplitudes of the unfolded contours of the
experimental radiographs. Gray dashed line: amplitude that can
be measured to better than 30% uncertainty under combined
effects of the signal-to-noise ratio, the 15-μm spatial resolution of
the diagnostic, the 4.3-μm pixel size of the images, and the LSSA
fitting error.

FIG. 4. Fourier spectra of the liner mass per unit length
obtained from HYDRA. Inset: simulated density map (in loga-
rithmic scale) of the imploding liner. Horizontal and vertical axes
correspond to the axial and radial coordinates, respectively, and
are measured in mm. Red lines denote the unfolded contours from
the synthetic radiographs in Fig. 2.
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fixed by including additional modes [44–47]. The WNL
model also misses cylindrical convergence and feedthrough
effects which become important as the liner further implo-
des [49,50]. Adding these effects into a nonlinear analytical
framework could improve our understanding of MRTI.
Conclusions.—We conducted experiments to study the

MRTI with two initially seeded modes. Using a novel
technique to uncover the underlying transmission contours
of the radiographs with the�3° viewing angle removed, we
showed experimental evidence of harmonic generation and
the onset of an inverse cascade resulting from the nonlinear
coupling of discrete modes. These experimental findings
agreed well with predictions from HYDRA simulations. We
presented a weakly nonlinear model that identifies the
leading-order nonlinear interactions between the MRTI
modes. Before breakdown, the model reproduces the
dynamics of the largest-amplitude modes, but the model
shows disagreement for the lowest-amplitude modes.
These findings motivate new controlled experiments to

scope the inverse cascade of MRTI in a deeper nonlinear
regime. Seeding more discrete axial modes (with well-
characterized initial amplitudes) can increase the number of
nonlinear interactions. A new multiframe radiography
diagnostic with a 0° viewing angle would remove the
shadowing of the MRTI features and simplify data analysis.
From the theory side, the techniques in Ref. [51] can be
used to quantify the dominant energy-transfer mechanisms
occurring in cylindrical MRTI, e.g., the kinetic-to-
kinetic and magnetic-to-kinetic energy-transfer channels.
Developing new analytical theories for describing fully
nonlinear, multimode MRTI is left for future work.
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