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The novel physics of twisted bilayer graphene has motivated extensive studies of magic-angle flat bands
hosted by moiré structures in electronic, photonic, and acoustic systems. On the other hand, bound states in
the continuum (BICs) have also attracted great attention in recent years because of their potential
applications in the field of designing superior optical devices. Here, we combine these two independent
concepts to construct a new optical state in a twisted bilayer photonic crystal slab, which is called as moiré
quasi-BIC, and numerically demonstrate that such an exotic optical state possesses dual characteristics of
moiré flat bands and quasi-BICs. To illustrate the mechanism for the formation of moiré flat bands, we
develop an effective model at the center of the Brillouin zone and show that moiré flat bands could be
fulfilled by balancing the interlayer coupling strength and the twist angle around the band edge above the
light line. Moreover, by decreasing the twist angle of moiré photonic crystal slabs with flat bands, it is
shown that the moiré flat-band mode at the Brillouin center gradually approaches a perfect BIC, where the
total radiation loss from all diffraction channels is significantly suppressed. To clarify the advantage of
moiré quasi-BICs, enhanced second-harmonic generation (SHG) is numerically proven with a wide-angle
optical source. The efficiency of SHG assisted by designed moiré quasi-BICs can be greatly improved
compared with that based on dispersive quasi-BICs with similar quality factors.
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Recently, there has been a great deal of interest in
studying moiré superlattices formed in twisted bilayer
van der Waals structures [1–20]. Analogous to moiré
bilayers in condensed matter physics, the study of photonic
moiré superlattices, which incorporate the twist degree
of freedom into the photonic structure, has also received
an increasing amount of attention [21–33]. For instance,
the localization-delocalization transition of light has been
demonstrated based on optical moiré superlattices [22,23].
The topological transition of the isofrequency curve is
observed in twisted bilayer α-MoO3 flakes [24].
Additionally, there are also some direct analogs of twisted
bilayer graphene using phononic and photonic crystal (PHC)
slabs [28–33] and bilayer electric circuits [34]. These twist-
enabled wave phenomena could inspire us to design next-
generation optical devices with novel performances.
On the other hand, bound states in the continuum (BICs),

another fascinating research field in photonics, have also
attracted great interest in recent years. A perfect optical
BIC, which has an infinite quality factor (Q factor), could
exist in lossless photonic structures without radiations to
the surrounding environment [35–55]. In practice, the
applicable BIC-based optical modes should possess finite
Q factors and resonance widths to be excited. This could
always be fulfilled by weakly deviating from perfect BICs,
where the incident wave vector or the spatial symmetry is
slightly changed. Recent investigations have shown that

high-Q quasi-BICs can be realized in various nanostruc-
tures, and many applications, such as enhanced nonlinear
effects [53] and low-threshold nanolasers [54,55], can be
achieved. Although these fascinating applications have
already been fulfilled, the dispersive effect should limit
the performance of quasi-BICs under wide-angle illumi-
nations, where resonant frequencies associated with the
input signal along different propagation directions deviate
from each other. The question is whether moiré physics and
BICs can be combined to construct novel optical states,
which are superior to current quasi-BICs and could further
improve the optical efficiency in many applications.
In general, it is difficult to fulfill moiré quasi-BICs with

flat-band dispersion in PHCs. Because, most investiga-
tions on engineering two-dimensional optical moiré flat
bands directly refer to the electronic counterpart, where
the Dirac point at the corner of the Brillouin zone (BZ) is
necessary. However, the ideal Dirac point is hard to find
above the light line due to the complex mode coupling in
high-frequency ranges. In this case, current investigations
on the design of moiré flat bands in PHC slabs are all in
the region below the light line. Paradoxically, quasi-BICs
in PHC slabs must locate above the light line. This makes
it very difficult to combine BICs and moiré flat bands to
construct moiré quasi-BICs. Consequently, a new method
of designing moiré flat bands above the light line must be
created.
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In this work, we propose an effective model at the band
edge of twisted bilayer PHC slabs to construct a moiré
quasi-BIC above the light line. It is found that a moiré
quasi-BIC with a narrow band dispersion could be achieved
by engineering the interlayer coupling and twisting of
bilayer PHC slabs. Moreover, we numerically calculate the
band dispersion and find that the calculated energy bands
are consistent with the effective model. In particular, by
decreasing the twist angle, the moiré quasi-BIC in a flat
band gradually approaches a perfect BIC. With a wide-
angle optical source, we numerically demonstrate that the
efficiency of SHG assisted by the moiré quasi-BIC can be
greatly improved compared to that based on dispersive
quasi-BICs with a similar Q factor.
Engineering moiré flat bands above the light line.—We

start by considering the system composed of aligned
bilayer PHC slabs suspended in air, as shown in the top
chart of Fig. 1(a). The period and thickness of the PHC slab
are chosen to be a ¼ 720 nm and d ¼ 144 nm. The radius
of air holes is r ¼ 144 nm. The material of PHC slabs
is GaAs with n ¼ 3.4 [56]. As shown in Fig. 1(b), we
calculate the energy band of the bilayer structure with an
extremely large interlayer distance (L ≫ a). In this case,
the interlayer coupling is nearly negligible, making the
energy band of bilayer PHC slabs become a twofold
degeneration of the single-layer counterpart. It is worthwhile
to note that each energy band has a quadratic dispersion with
respect to the Γ point, which possesses fourfold degener-
ation, and red and blue lines are used to mark the low- and
high-frequency energy bands, respectively.
Because of the orthogonality of low- and high-frequency

eigenmodes, the interlayer coupling (L ∼ a) of the bilayer
PHC slab could only exist between either a pair of low-
frequency or high-frequency energy bands. Here, we focus
on the construction of an effective model for low-frequency
energy bands, which are crucial for the formation of
moiré flat bands, as demonstrated below. In this case,
the effective Hamiltonian of a pair of low-frequency bands
is expressed as

Hbilayer ¼
�
ω0 þ bk2 U

U ω0 þ bk2

�
; ð1Þ

where ω0 is the eigenfrequency of the low-frequency band
at the Γ point of a single-layer PHC slab. b is the dispersion
coefficient and U is the interlayer coupling strength, which
increases exponentially as the interlayer distance decreases.
The detailed deviation of Eq. (1) is provided in Sec. S1
of Ref. [57].
Next, we rotate the bilayer PHC slab by an angle θ with

respect to a common air hole to achieve moiré PHC slabs.
To ensure the translational symmetry, the commensurate
rotation angle should be defined as cosðθÞ ¼ ðm2 þ n2 þ
4mnÞ=ð2m2 þ 2n2 þ 2mnÞ with m and n being two inte-
gers. The bottom chart in Fig. 1(a) plots the moiré unit cell

with θ ¼ 9.43° (m ¼ 3 and n ¼ 4), and a1 (and a2)
represents the real-space lattice vector. Figure 1(c) shows
the BZ of the moiré superlattice in the extended scheme.
Two red and blue large hexagons correspond to the
first BZs of the top and bottom layers, where K0 and K00
denote two equivalent valleys of each layer. Black small
hexagons correspond to the folded BZ of the moiré PHC
slab, where Γ0, Γ1, Γ2, and Γ3 label center points in the

FIG. 1. (a) The top and bottom charts present the unit cell of
aligned and twisted bilayer PHC slabs with θ ¼ 9.43°. (b) Energy
bands of the bilayer PHC slab with a large interlayer distance.
(c) Schematic diagram of the moiré BZ in the extended scheme.
(d)–(f) Band dispersions with three interlayer coupling strengths
of the effective model. (g)–(i) Calculated band structures of moiré
PHC slabs with interlayer distances being 1500, 600, and 470 nm.
Here, the twist angle is θ ¼ 9.43°. There is an anticrossing
induced by the coupling between the high-energy (blue line) and
the low-energy (red line) bands.
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first-, second-, third- and fourth-order moiré BZs. It is
noted that low-frequency quadratic dispersions could also
exist at each Γ point of the higher-order moiré BZs.
To further illustrate the property of low-frequency moiré

bands, we construct an effective model of moiré PHC slabs
around the center of the first moiré BZ. To accurately
describe the low-frequency band dispersion at the K point
shown in the enlarged view of Fig. 1(c), eigenmodes
belonging to the three nearest moiré BZs should be
considered in the effective model. This is because eigenm-
odes originating from other high-order moiré BZs
around the K point possess much larger frequencies,
making the influence of other BZs on the low-frequency
moiré bands become negligible. In this case, the basis
function of the effective mode can be given by

ψmoiré ¼ ðEð1Þ
1 Eð2Þ

1 Eð1Þ
2 Eð2Þ

2 Eð1Þ
3 Eð2Þ

3 ÞT , where the sub-
script labels the low-frequency mode of three nearest moiré
BZs, and the superscript represents the upper and lower
PHC slabs. Based on this six-band basis, the low-frequency
effective Hamiltonian of moiré PHC slabs can be written as

Hmorié ¼

0
B@H1 V0 V0

V0 H2 V0

V0 V0 H3

1
CA

Hξ ¼
 
ω0 þ bðk⃗ − Gξ

�!Þ2 U

U ω0 þ bðk⃗ − Gξ
�!Þ2

!

V0 ¼
�
0 V

V 0

�
; ð2Þ

where ξ ¼ 1; 2; 3 and distances from three nearest BZs to

the center of k space equal to G⃗1 ¼ ð0; 0Þ, G⃗2 ¼ Γ0Γ10
⟶

, and

G⃗3 ¼ Γ0Γ100
⟶

. In particular, three two-by-two diagonal
matrices represent effective Hamiltonians of moiré bands
in three nearest BZs, where U is the interlayer coupling
from the same BZ. The off-diagonal matrix V0 corresponds
to the interlayer coupling between moiré bands from
different BZs (V is the coupling strength). Such long-range
interlayer couplings result from the twist-induced reduction
of the original translation symmetry. It is noted that in the
small twist-angle limitation, the value of interlayer coupling
strength is independent of the k vector. Hence, we could
treat the interlayer coupling strengths as constants.
Based on the effective model, in Figs. 1(d)–1(f), we

calculate band dispersions with three different interlayer
couplings at θ ¼ 9.43°. As plotted in Fig. 1(d), when the
interlayer coupling is zero, the band of the moiré PHC slab
is identical with the folded band of the single-layer PHC
slab. With increasing interlayer couplings (U ¼ 0.003,
V ¼ 0.03), the band degeneracy at the K point is opened
as shown in Fig. 1(e). This is because the required trans-
lational symmetry, which protects the degeneracy at the K

point, is destroyed by the nonignored interlayer coupling.
By further increasing the coupling strength to a magic value
(U ¼ 0.01, V ¼ 0.1), the lowest band becomes very flat, as
shown in Fig. 1(f). In this case, we can see that the low-
frequency moiré flat band could appear with the balance
between the twist angle and the interlayer coupling in moiré
PHC slabs. Specifically, unlike the effective model of
twisted bilayer graphene around the BZ corner of the
graphene monolayer, here, we formulate an effective model
around the BZ center. It is widely known that all eigenm-
odes of the PHC slab at the BZ center locate above the light
line. Hence, our effective model gives rise to a new method
to engineer moiré flat bands above the light line. In
addition, it is worthy to note that the relationship between
different orders of Fourier components for the interlayer
coupling strength (U and V) is different from that of twisted
bilayer graphene. This is due to the fact that the coupling
between two PHC slabs with a relatively large distance (the
coupling induced by the evanescent fields is weak) depends
on the leaky rate of optical modes, see Sec. S2 of Ref. [57]
for details.
To test the validity of the above proposed effective

model, we numerically calculate the band structure of
moiré PHC slabs with θ ¼ 9.43°. The result with L ¼
1500 nm is presented in Fig. 1(g). Red and blue lines
correspond to bands rooted from the low- and high-
frequency bands of the aligned bilayer PHC slab. It is
seen that the low-frequency part of band structure is similar
to that predicted by the effective model without interlayer
couplings [in Fig. 1(d)]. The difference could be interpreted
by the existence of very weak interlayer couplings in the
real structure, which slightly breaks the degeneration at
the K point. By decreasing the interlayer distance to
L ¼ 600 nm, the effective interlayer coupling becomes
stronger. The calculated band dispersion is displayed in
Fig. 1(h), where two pairs of degenerated modes at the K
point appear in separated frequencies and the lowest band
becomes flatter. These features could be accurately man-
ifested by the effective model with suitable interlayer
couplings [in Fig. 1(e)]. When the interlayer distance is
tuned to L ¼ 470 nm, the interlayer coupling strength
further increases, making the lowest band become a nearly
perfect moiré flat band, as shown in Fig. 1(i). Comparing
the calculated band with that given by the effective model,
we obtain good consistency around the K point. The slight
difference around M and Γ points is due to the approxi-
mation with three moiré BZs in the effective model. In
Sec. S2 of Ref. [57], an effective model considering four
nearest BZs is proposed, which can give more accurate
results around the M point.
In S3 of Ref. [57], band dispersions with the twist

angle being 7.34° are calculated at different interlayer
distances. The variation of band flatness as functions of
the interlayer distances are also provided at three twist
angles 7.43°, 9.43°, and 13.2° (see Sec. S4 of Ref. [57] for

PHYSICAL REVIEW LETTERS 128, 253901 (2022)

253901-3



details). Based on analytical and numerical results, we
find that moiré flat bands could be fulfilled by balancing
the interlayer coupling strength and the twist angle.
Specifically, the smaller the twist angle is, the lower the
interlayer coupling strength is required to form the flat-
band moiré BIC. In this case, when the twist angle is fixed,
there is a suitable interlayer coupling strength (interlayer
distance) to balance the twist angle to form moiré flat
bands. Referring to the above results, it is expected that our
proposed effective model provides a guideline to engineer
moiré flat bands above the light line, and in the following,
we show that such a method could be used to achieve the
combination of moiré flat bands and BICs.
Moiré quasi-BICs in twisted bilayer PHC slabs.—

Previous investigations have shown that symmetry-pro-
tected BICs always exist at the BZ center. For the above
aligned bilayer PHC slab, the C6 symmetry at the Γ point is
expected to induce a twofold-degenerate BIC. In Fig. 2(a),
we calculate the far-field polarization states and Q factors
of the bilayer PHC slab, where white lines represent the
linear polarization and the color bar measures Q factors.

It is shown that the far-field polarization state at the Γ point
is ill defined, making the radiation field vanish and the
topological charge equal to −2. In addition, the Q factor is
exponentially increased to infinite when the k vector
approaches to the Γ point. In this case, the mode at the
BZ center is a symmetry-protected BIC.
By twisting the bilayer PHC slab, an enlarged moiré

supercell could be realized. It is noted that the period of
moiré unit cell is much larger than the wavelength. In this
case, except for the zero-order diffraction channel, other
higher-order diffraction channels appear. Figures 2(b)
and 2(c) illustrate schematic diagrams of zero-order and
first-order diffraction channels with θ ¼ 9.43° and
L ¼ 470 nm. To analyze the far-field radiation property,
we calculate the zero-order and first-order far-field polari-
zation states toward the upward direction, as shown in
Figs. 2(d) and 2(e). Results for far-field polarization states
toward the downward direction are shown in Sec. S5 of
Ref. [57]. Red and blue ellipses denote the right- and left-
handed elliptic polarizations. We can see that due to the
twist-induced breaking of up-down symmetry, zero-order
far-field polarization states are changed from linear polar-
izations to elliptic polarizations with different major axis
orientations. In addition, it is clearly shown that the far-field
polarization state at Γ point of the zero-order diffraction
channel is still ill-defined. For the six first-order diffraction
channels, there are certain polarization states at the Γ point,
indicating that eigenmodes at the BZ center could couple
with the environment. It is worth noting that, similar to the
first-order channels, other existing higher-order channels
could also couple with radiational modes.
Although these higher-order diffraction channels could

make the original perfect BIC in aligned bilayer PHC slabs
become lossy, we find that by decreasing the twist angle,
the Q factor at BZ center for the low-frequency flat band is
exponentially increased to infinite, as shown in Fig. 2(f).
This could be explained by the much weaker interlayer
coupling for the realization of low-frequency moiré flat
bands when the twist angle decreases. The weak interlayer
coupling could decrease the radiational loss from higher-
order diffraction channels. In this case, the eigenmode at
the BZ center of the moiré flat band evolves from a perfect
BIC. Hence, we call these modes as moiré quasi-BICs,
which is beneficial for various applications under a wide-
angle illumination. As an instance, we numerically prove
that the nonlinear effect could be greatly enhanced com-
pared to that based on dispersive quasi-BICs with similarQ
factors.
Enhanced second-harmonic generation by moiré quasi-

BICs.—Next, we provide a numerical demonstration of
the superior performance in the enhancement of SHG by
flat-band moiré quasi-BICs. Here, the incident light is
regarded as a wide-angle source, as illustrated in Fig. 3(a).
The angular-resolved intensity is written as IðθinÞ ¼
I0 expð−γθ2inÞ, where θin marks the incident angle and

FIG. 2. (a) Far-field polarization states and Q factors of the
aligned bilayer PHC slab. (b),(c) Schematic diagrams of zero-
order and first-order diffraction channels with θ ¼ 9.43°. (d),(e)
Far-field polarization states of zero-order and first-order diffrac-
tion channels toward the upward direction with θ ¼ 9.43° and
L ¼ 470 nm. (f) Q factors of moiré quasi-BICs as a function of
the twist angle. The interlayer distance is different for each twist
angle to fulfill the flat band.
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γ ¼ 32 determines the angular spectrum. For comparison,
we first consider the moiré PHC slab with θ ¼ 13.2° and
L ¼ 460 nm, which possesses a dispersive quasi-BIC with
a Q factor similar to designed moiré quasi-BIC with flat
bands. As shown in Fig. 3(b), we calculate the average
efficiency of SHG, which is defined as ηave ¼
∬ IðθinÞηðθin;φÞdθindφ=∬ IðθinÞdθindφ with ηðθin;φÞ being
the efficiency of SHG with a fixed incident angle ðθin;φÞ.
The inset displays the efficiency of SHG at different
incident angles. We can see that due to the dispersion
effect, the maximum values of ηðθin;φÞ at different incident
angles deviate from each other, extending the total non-
linear signal over a wide frequency range.
Then, we calculate the average efficiency of SHG using

the above designed twisted bilayer PHC slab sustaining
moiré quasi-BIC with a flat band (θ ¼ 9.43° and
L ¼ 470 nm) shown in Fig. 3(c). The inset shows the
efficiency of SHG at different incident angles. We can see
that the maximum values of ηðθin;φÞ at different incident
angles merge at a single frequency. In this case, the total
nonlinear signal at the flat-band frequency is further
enlarged, which is nearly ten times larger than that based
on dispersive quasi-BICs. Hence, we can deduce that moiré
quasi-BICs could exhibit highly efficient performances in
various surface-enhanced applications. In addition, by
considering the suitable Q factor, which is high enough
for applications and also possesses the excitable resonance
width, and the size of twisted bilayer PHCs with a sufficient
amount of moiré units, we suggest the twist angle could be
set in the range from 4.41° to 9.43°.
In conclusion, we have proposed an effective model of

twisted bilayer PHC slabs to construct a moiré quasi-BIC
around the center of the BZ. We find that a moiré quasi-BIC
with a narrow band dispersion could be achieved by

engineering the interlayer coupling and twisting of the
bilayer PHC slabs. Moreover, the calculated bands are
consistent with those obtained from the effective model. By
decreasing the twist angle of the bilayer PHC slab with a
flat band, the moiré quasi-BIC gradually approaches a
perfect BIC. Furthermore, with a wide-angle optical source,
we demonstrate that the efficiency of SHG assisted by
moiré quasi-BICs can be greatly enhanced compared to that
based on dispersive quasi-BICs with similar Q factors. Our
findings may have potential applications in designing BIC-
based photonic devices with high efficiencies.
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