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The electric monopole (E0) transition strength ρ2 for the transition connecting the third 0þ level, a
“superdeformed” band head, to the “spherical” 0þ ground state in doubly magic 40Ca is determined via
eþe− pair-conversion spectroscopy. The measured value ρ2ðE0; 0þ3 → 0þ1 Þ ¼ 2.3ð5Þ × 10−3 is the smallest
ρ2ðE0; 0þ → 0þÞ found in A < 50 nuclei. In contrast, the E0 transition strength to the ground state
observed from the second 0þ state, a band head of “normal” deformation, is an order of magnitude larger
ρ2ðE0; 0þ2 → 0þ1 Þ ¼ 25.9ð16Þ × 10−3, which shows significant mixing between these two states. Large-
scale shell-model (LSSM) calculations are performed to understand the microscopic structure of the excited
states and the configuration mixing between them; experimental ρ2 values in 40Ca and neighboring isotopes
are well reproduced by the LSSM calculations. The unusually small ρ2ðE0; 0þ3 → 0þ1 Þ value is due to
destructive interference in the mixing of shape-coexisting structures, which are based on several different
multiparticle-multihole excitations. This observation goes beyond the usual treatment of E0 strengths,
where two-state shape mixing cannot result in destructive interference.
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Shape coexistence is a unique feature of self-bound,
finite, quantum many-body systems in which two or more
different shapes emerge at similar excitation energies. This
phenomenon is known to manifest in small atomic clusters
[1] and molecules [2]. It also appears to be ubiquitous in
atomic nuclei [3]. The shape of a nucleus is determined by
the mean field generated by its constituent protons and
neutrons. It is influenced by the number of nucleons,
energy level density at the Fermi surface, an attractive
residual interaction, and the principle that nuclear shapes
may change to lower the energy of the system. A crucial
difference between the atomic nucleus and more macro-
scopic systems is that quantum-mechanical tunneling
causes coexisting shapes to mix; each observed state is a
superposition of configurations that correspond to the
various shapes. In particular, shape coexistence occurs
near closed-shell nuclei, where it is based on competition
between the stabilizing effect of nucleon shell closures to
retain a spherical shape, and the proton-neutron residual
interaction which drives deformation via multiparticle-
multihole excitations [3].
With the aid of modern radioactive-ion-beam facilities,

shape coexistence has also been identified in nuclei far
from the valley of β stability. This potentially affects
locations of nuclear drip lines and waiting points that

influence competition between β decay and neutron capture
in cosmic nucleosynthesis. Experimental indications of
shape coexistence have been reported in the double-
closed-shell, neutron-rich nucleus 78Ni [4]. It can also be
closely associated with the breakdown of familiar shell
structures, such as suppression of the N ¼ 20 shell gap in
neutron-rich 32Mg [5,6]. The 0þ ground state, with very
large quadrupole deformation parameter β2 ≈ 0.6, is sup-
posed to coexist with a near-spherical first-excited 0þ level
[7]. Shape coexistence is generally discussed in terms of a
two-state mixing model [3]. However, a two-state analysis
of 32Mg questioned the aforementioned interpretation of a
deformed ground state and spherical excited state [8,9]. If
three-level mixing is applied in 32Mg [10,11], BðE2Þ
values, level energies, and transfer cross sections can be
successfully explained, but the 0þ3 level in this nucleus has
not been experimentally identified yet. More recently, the
insufficiency of the two-state mixing model applied to the
2þ states in 42Ca was also discussed [12].
Doubly magic 40Ca exhibits three distinct forms of

quadrupole deformation: “spherical,” “normal deforma-
tion” (ND), and “superdeformation” (SD). Therefore,
it provides a rare opportunity to study mixing effects
between multiple configurations within a single nuclide.
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The first-excited 0þ2 state at 3.35 MeV is the head of a ND
rotational band. The second-excited 0þ3 level at 5.21 MeV is
the head of a SD band [13,14]. In addition, the 2þ2 level at
5.24 MeV is interpreted as a member of a K ¼ 2, four-
particle four-hole (4p-4h) band [15]. Emergence of various
structures in low-lying levels in 40Ca indicates shape
coexistence. The main configurations for the ND and
SD structures are 4p-4h, and 8p-8h excitations across
the N; Z ¼ 20 shell gap, respectively [15–20]. The tran-
sition quadrupole moments for the low-spin and high-spin
part of the SD band were reported to have a significant
difference, indicating the mixing of lower-spin states with a
less deformed configuration [14].
Furthermore, there is another unique feature of the SD

band in 40Ca. Although SD nuclei are reported in several
mass regions [21], SD band heads with Jπ ¼ 0þ are only
observed in the A ¼ 40 [22,23] and fission-isomer [21]
regions. This makes it difficult to study their properties,
such as mixing with less-deformed configurations, in detail.
Therefore, 40Ca provides a unique testing ground in which
the electric monopole (E0) transition strength ρ2ðE0; 0þ →
0þÞ between a SD band head and spherical ground state can
be studied as a direct probe of shape mixing [24].
The ρ2ðE0; 0þ3 → 0þ1 Þ in 40Ca was previously investi-

gated via the 40Caðp; p0Þ reaction by measuring eþe− pair
decay with a plastic-scintillator pair spectrometer [25].
However, insufficient energy resolution meant that this
state at 5.21 MeV was not resolved from the 2þ2 state at
5.25 MeV, and an upper limit of ρ2ðE0; 0þ3 → 0þ1 Þ < 0.06
was deduced. In order to accurately determine the value of
ρ2ðE0; 0þ3 → 0þ1 Þ and understand the properties of the SD
band, measuring the E0 transition with higher energy
resolution and low-background conditions is critical.
This Letter reports on a new study of excited states in

40Ca following proton inelastic scattering from a self-
supporting, 1.5-mg=cm2-thick, natural Ca target. Proton
beams were delivered by the 14UD Pelletron tandem
accelerator of the Heavy Ion Accelerator Facility at the
Australian National University. The optimum beam energy
to populate the 0þ3 state, 8.6 MeV, was determined by
scanning the beam energy and comparing relative yields
of the 1.308-MeV 0þ3 → 2þ1 and 5.249-MeV 2þ2 → 0þ1 γ-ray
transitions.
Electron-positron (eþe−) pair decays from excited states

were measured by the superconducting solenoid, Super-e
spectrometer [26–28]. The solenoid axis is perpendicular to
the beam axis. The eþe− pairs emitted from the target are
transported by the magnetic field to the Miel detector,
an array of six 9-mm-thick Si(Li) crystals. Two axial,
HeavyMet baffles are mounted between the target and
detector to block γ rays and x rays, scattered beam particles,
and secondary electrons. In this arrangement, eþe− pairs of
nearly equal energy can reach the detector. The thickness of
the segments allows for full absorption of pair decays

formed from transition energies up to 8 MeV. The effi-
ciency of the pair-conversion spectrometer was derived
from Monte Carlo simulations that consider the magnetic
field, energy, and angular correlation of emitted eþe− pairs.
Spin alignment in the reaction and consequent angular
distributions of eþe−-pair emission were taken into
account [27].
A high-purity germanium (HPGe) detector was placed

1.5 m from the target and 135° relative to the beam axis to
simultaneously detect γ rays emitted in the reactions. The
relative γ-ray detection efficiency was measured using a
56Co source. Energies and detection times from the six
Miel segments, energies from the HPGe detector, and the
magnetic field values were stored event by event and sorted
off-line.
The γ-ray and eþe− coincidence spectra analyzed to

extract the ρ2ðE0Þ values are shown in Fig. 1. Gamma-ray
photo peaks, as well as single- and double-escape peaks
associated with the 5.249-MeV ð2þ2 → 0þ1 Þ, 5.629-MeV
ð2þ3 → 0þ1 Þ, and 5.903-MeV ð1−1 → 0þ1 Þ transitions of 40Ca
are evident. The half-lives of these states are 83þ11

−9 , 40(15),
and 15.8(22) fs, respectively [29]. Since the stopping time
of 40Ca recoils in the target is approximately 0.3 ps, these γ
rays are emitted while the nucleus is in motion, and the
peaks are consequently Doppler broadened. The γ-ray
energy spectrum corrected for Doppler shift is presented
in Fig. 1(a). Escape peaks of the 6.129-MeV γ ray in 16O
[30] from oxidation of the Ca target are also visible. Since
the half-life of this state is 18.4 ps, these γ rays are emitted
after stopping, and the associated peaks are sharp.
The eþe− pair spectrum is shown in Fig. 1(b) with the

energy axis shifted by 1.022 MeV to correspond to the
associated transition energies. A background that was
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FIG. 1. (a) The γ-ray energy spectrum measured by the HPGe
detector, (b) eþe− pair coincidence spectrum, (c) and eþe−
spectrum after background subtraction. Peaks at 5.212, 5.249,
and 5.629 MeVare labeled, as are single-escape (SE) and double-
escape (DE) contaminant peaks.
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parametrized by a polynomial function was subtracted,
giving the eþe− pair spectrum presented in Fig. 1(c). There
is a peak at 5.212 MeV with no associated γ ray; this is the
E0, 0þ3 → 0þ1 transition. The only other peaks observed
in Figs. 1(b) and 1(c) are the 5.249- and 5.629-MeV E2
transitions from the 2þ2 and 2þ3 levels to the ground state.
The extraction of ρ2 values was based on an analysis of

γ-ray and eþe− spectral yields. The term ρ2 is related to the
measured E0 transition rate 1=τðE0Þ by [24]

1

τðE0Þ ¼ ρ2ðΩK þ ΩL1
þ � � � þΩπÞ; ð1Þ

where the Ωj terms are electronic factors associated with
atomic shells (K;L1;…). For both electron and eþe− pair
conversion (π), they depend on the atomic number and
transition energy; numerical evaluations are avail-
able [31,32]. The electron conversion contributions to
the E0 transitions considered here are < 0.6% (0þ2 → 0þ1
and 0þ3 → 0þ1 ) and 11% (0þ3 → 0þ2 ). The relevant values of
Ωπ are included in Table I.
The mean lifetime of the 0þ3 state τ ¼ 1.47ð30Þ ps is

known from Doppler-shift attenuation measurements [33].
Figure 2 shows the partial level scheme of 40Ca relevant
to the present analysis [29]; the 0þ3 state decays by a
1.308-MeV E2 γ-ray transition, or by 1.859- or 5.212-MeV
E0 transitions. While the 1.859-MeV 0þ3 → 0þ2 E0 com-
ponent was sought by optimizing the Super-e magnetic
field for that transition energy, a clear peak was not
observed above background [see Fig. 1(c)]; however, an
upper limit was established for the branching ratio.

Therefore, using the measured γ-ray and eþe− pair inten-
sities and theoretical pair-conversion coefficients from
Band-Raman internal conversion coefficient [32], all decay
branches from the 0þ3 state were determined. A value of
ρ2ðE0; 0þ3 → 0þ1 Þ ¼ 2.3ð5Þ × 10−3 was extracted. An
upper limit of ρ2ðE0; 0þ3 → 0þ2 Þ < 4.5 × 10−2 was also
obtained for the 1.859-MeV transition. The significantly
smaller value of ΩπðE0Þ explains why this transition was
not observed directly in the experiment.
Since the 0þ2 level is the lowest excited state and,

consequently, has a single E0 decay branch to the ground
state, the evaluation of ρ2ðE0; 0þ2 → 0þ1 Þ ¼ 25.9ð16Þ ×
10−3 from the known lifetime was less complex. This ρ2

value is large, indicating significant shape differences
and mixing between the two states. The E0 transition
strengths from our work are summarized in Table I.
Systematic behavior of the ρ2ðE0; 0þ → 0þ1 Þ values for
even-even nuclei with A < 50 [34] is presented in Fig. 3.
The dashed line corresponds to ρ2ðE0Þ ¼ 0.5A−2=3 [24].
The ρ2ðE0; 0þ2 → 0þ1 Þ value measured in the present
work shows good agreement with the systematic trend.
Conversely, ρ2ðE0; 0þ3 → 0þ1 Þ is significantly smaller than
the trend line and all of the other experimental values.
In general, the E0 transition strength between states in a

nucleus gives a direct measure of shape mixing between
them [35]. The associated mixing amplitude α is usually
estimated by considering a simple two-state model with
spherical and deformed wave functions [24]. In such a case,
ρ2ðE0Þ is related to α and the difference in square of
quadrupole deformation parameters Δðβ22Þ by

ρ2ðE0Þ ¼
�
3

4π
Z

�
2

α2ð1 − α2Þ½Δðβ22Þ�2: ð2Þ

Using the measured ρ2ðE0Þ and the reported β2 values of
0.27(5) and 0.59þ0.11

−0.07 for the 0þ2 and 0þ3 states, respectively
[13], α2→1 ¼ 0.55ð37Þ and α3→1 ¼ 2.9þ1.1

−0.8 × 10−2 were

TABLE I. Summary of the ρ2ðE0; 0þ → 0þÞ values in 40Ca.

Transition Energy (MeV) τðE0Þ (ns) ΩπðE0Þ (1/s)[31] ρ2 × 103

0þ2 → 0þ1 3.353 3.13(12) 1.24ð6Þ × 1010 25.9(16)
0þ3 → 0þ1 5.212 3.2(7) 1.36ð7Þ × 1011 2.3(5)
0þ3 → 0þ2 1.859 > 76 2.79ð14Þ × 108 < 45
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FIG. 2. Partial level scheme of 40Ca [29].

FIG. 3. Systematics of the ρ2ðE0; 0þ → 0þ1 Þ values of even-
even A < 50 nuclei (filled circles) [34]. The ρ2ðE0; 0þ3;2 → 0þ1 Þ in
40Ca from this Letter are shown as open and filled triangles.
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determined for the 0þ2 → 0þ1 and 0þ3 → 0þ1 transitions.
Here, the β2ð0þ1 Þ ¼ 0 [36] was assumed. Within the two-
state model, the small mixing for the 0þ3 → 0þ1 transition
implies a very small overlap of wave functions between the
spherical ground state and SD band head.
Large-scale shell-model (LSSM) calculations were per-

formed to gain a microscopic understanding of the mea-
sured ρ2ðE0Þ values and the structure of 40Ca. Assuming an
inert 16O core, the valence model space included the full sd
shell (0d5=2; 1s1=2; 0d3=2) and restricted fp shell
(0f7=2; 1p3=2) orbitals. The calculations used E0 effective
charges of ðep; enÞ ¼ ð1.8; 0.8Þe, and harmonic-oscillator
(HO) single-particle wave functions with ℏω ¼ 45A−1=3−
25A−2=3 MeV.
The effective interaction was designed to describe multi-

particle-multihole (mp-mh) excitations across the N ¼
Z ¼ 20 shell gap by tuning the SDPF-M interaction
[37,38] within the model space, which was truncated to
include m ≤ 10. The tuning was carried out so that one-
neutron separation energies of 40;41Ca and one-α separation
energies of 40Ca and 44Ti were reproduced with the many-
body correlations that were included. Recently, this inter-
action was successfully applied to high-spin states in
35S [39].
The calculated mp-mh probabilities for the 0þ1;2;3 states

of 40Ca are listed in Table II. The dominance ofm ¼ 0, 4, 8
configurations in 0þ1;2;3 is clearly observed; this structure is
consistent with Ref. [20]. There is also considerable
mixing, especially with neighboring values of m.
Figure 4 shows the ρ2ðE0Þ values for A ≈ 40 nuclei

whose excited 0þ states are dominated by mp-mh excita-
tions. Data for 36S, 38Ar, 42Ca [34,40], and 40Ca (this Letter)
are plotted with the corresponding LSSM calculations.
Overall, the theory reproduces the experimental data fairly
well; in particular, excellent agreement was found for the
0þ3 → 0þ1 in 40Ca, despite its value being lowest among the
Z < 50 nuclei. The upper limit value for the 0þ3 → 0þ2
transition is also consistent with the LSSM result.
All of the ground states considered in Fig. 4 are near

spherical, whereas the 0þ2 states in 36S, 38Ar, and 40Ca are
considered to have normal deformations [41]. With similar
ρ2ðE0Þ × 103 ≈ 10–20 values, these 0þ2 → 0þ1 transitions
are in accordance with the two-state analysis of Eq. (2)
when similar mixing amplitudes are employed. However,

the 0þ2 state in 42Ca [42] and the 0þ3 state in 40Ca [13] are
strongly deformed, yet their ρ2 values for the transition to
the ground state are completely different. This unexpected
observation stimulates a detailed analysis of the role of
mixing, which is described below.
In the present calculation, HO wave functions were

used in a model space that prohibited single-nucleon
excitations of 2ℏω, such as 0s → 1s0d. A many-body
state jΨii may be decomposed into its mp −mh compo-
nents, jΨii ¼

P
m jΨiðmÞi, such that

hΨfjr2jΨii ¼ b2
X
m

wðmÞξifðmÞ; ð3Þ

where b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðMωÞp

is the HO length parameter, wðmÞ ¼
mþ cð40CaÞ are the weighting factors for each value of m
with cð40CaÞ ¼ 120, and ξifðmÞ ¼ hΨfðmÞjΨiðmÞi are the
overlap factors between states under inspection. Here, only
the cases where initial and final states denoted i and f, with
0þ assignments are considered. For f ≠ i,

P
m ξifðmÞ ¼ 0

must also be satisfied from the imposed orthogonality
condition, hΨfjΨii ¼ δif.
Since N ¼ Z ¼ 20 in 40Ca, T ¼ 0 for all 0þ states and

only isoscalar transitions contribute. Hence, the E0 matrix
element is given by

MðE0; i → fÞ ¼
X
m

MifðmÞ

¼ eIS × b2
X
m

½wðmÞ × ξifðmÞ�; ð4Þ

where eIS ¼ ðep þ enÞ=2. The individual MifðmÞ terms
are, therefore, described by a weight factor wðmÞ and an
overlap factor ξifðmÞ.
In Fig. 5, ξifðmÞ and MifðmÞ are plotted for each

contributing value of m. The orthogonality condition also
allows the weighting factors to be adjusted without

TABLE II. Calculated excitation energies and mp-mh proba-
bilities of the 0þ1;2;3 states in 40Ca.

Ex (MeV) 0p-0h 2p-2h 4p-4h 6p-6h 8p-8h 10p-10h

0þ1 0 0.46 0.39 0.13 0.02 0.00 0.00
0þ2 2.81 0.04 0.03 0.63 0.26 0.03 0.00
0þ3 6.37 0.02 0.07 0.11 0.23 0.56 0.01

FIG. 4. Systematics of the ρ2ðE0Þ values for 36S, 38Ar, 42Ca, and
40Ca. Open triangles are experimental values from Refs. [34,40]
and this Letter; filled circles are LSSM calculations.
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affecting the total E0 matrix element. In this case, the large
values of wðmÞ for 40Ca (mþ 120) may be replaced with a
smaller value wðm0Þ ¼ m − m̄, where m̄ ¼ P

m m ×
ξðmÞ2=Pm ξðmÞ2 for each transition. The total E0 strength
is independent of the choice of m̄, but such a shift reduces
the amplitude of each MifðmÞ value, thus facilitating the
understanding of how the individual mixing amplitudes
contribute to the total E0 matrix element. The MifðmÞ
values shown in Fig. 5(b) were determined with the scaled
weighting factors, wðm0Þ.
Figure 5(a) shows that both the 0þ2 → 0þ1 and 0þ3 → 0þ2

transitions have negative ξifðmÞ values for small m that
change sign once and become positive at larger m. In such
cases, wðm0Þ may be chosen so that the MifðmÞ values add
constructively, as presented in Fig. 5(b), and the resulting
E0 matrix element is moderate. On the other hand, the
0þ3 → 0þ1 transition is rather different: The ξifðmÞ values
change sign twice at m ¼ 0 → 2 and m ¼ 4 → 6. In this
case, destructive interference of MifðmÞ is inevitable for
any possible value of wðm0Þ.
Finally, the two-state description is revisited in terms of

the present microscopic analysis. A system obeying this
model should have two nonvanishing ξifðmÞ values at m ¼
m1; m2 constrained to ξifðm1Þ þ ξifðm2Þ ¼ 0. This system
has only 1 degree of freedom corresponding to α in Eq. (2);
no phase factor is relevant to the observables. In contrast,
when three states are involved there are 2 degrees of
freedom, and interference occurs between them. The very
small ρ2ðE0; 0þ3 → 0þ1 Þ value is a manifestation of this new
aspect of shape coexistence with three-state mixing.
Note that the degree of the mixing between SD and ND

can be probed with BðE2; 0þ3 → 2þ1 Þ. The calculated value
1.3 W.u. is significantly smaller than the measured value
17þ4

−3 W:u: Considering the moderate ρðE0; 0þ3 → 0þ2 Þ
value by LSSM (see Fig. 3), we do not expect larger

mixing between those bands. This underestimate may be
due to incorrect K mixing between the 2þ1 and 2þ2 states.
In summary, the E0 transition strength of ρ2ðE0; 0þ3 →

0þ1 Þ ¼ 2.3ð5Þ × 10−3 was measured for the first time in
doubly magic 40Ca; this is the lowest ρ2ðE0Þ value
measured among nuclei of A < 50. An upper limit of
ρ2ðE0; 0þ3 → 0þ2 Þ < 4.5 × 10−2 was also obtained. Large-
scale shell-model calculations were performed for 40Ca and
several neighboring nuclei. The calculated E0 matrix
elements were analyzed in terms of multiparticle-multihole
configuration mixing. Moderately large ρ2ðE0Þ values for
the 0þ2 → 0þ1 and 0þ3 → 0þ2 transitions are consistent with a
two-state model, in which only a squared mixing amplitude
matters. Conversely, the extremely small ρ2ðE0; 0þ3 → 0þ1 Þ
value is caused by destructive interference among mp-mh
components in a three-state mixing scenario. The new data
and shell-model calculations provide a novel perspective on
multiple shape coexistence, with implications for exper-
imental and theoretical activities extending to nuclei far
from stability.

This work is supported by the International Joint
Research Promotion Program of Osaka University, JSPS
KAKENHI Grants No. JP 17H02893 and No. 18H03703,
JSPS A3 Foresight program Grant No. JPJSA3F20190002,
and the Australian Research Council Grants
No. DP140102986 and No. DP170101673. N. S. and
Y. U. acknowledge KAKENHI Grants No. 20K03981
and No. 17K05433, “Priority Issue on Post-K
Computer” (Grants No. hp190160, No. hp180179, and
No. hp170230), and “Program for Promoting Research on
the Supercomputer Fugaku” (Grants No. hp200130 and
No. hp210165), MEXT, Japan. E. I., N. A., N. S., and Y. U.
acknowledge support from the RCNP Collaboration
Research Network; A. A., B. J. C., J. T. H. D., T. J. G.,
and B. P. M. acknowledge support of the Australian
Government Research Training Program. Support for the
ANU Heavy Ion Accelerator Facility operations through
the Australian National Collaborative Research
Infrastructure Strategy program is also acknowledged.
The authors thank J. Heighway for preparing targets.
E. I. acknowledges fruitful discussions with J. L. Wood
on issues of shape coexistence.

*ideguchi@rcnp.osaka-u.ac.jp
†Present address: Center for Computational Sciences, Uni-
versity of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8577,
Japan.

[1] M. Horoi and K. A. Jackson, Chem. Phys. Lett. 427, 147
(2006), and references therein.

[2] J. J. Lagowski, Chemistry: Foundations and Applications,
Vol. 3 (Macmillan Reference, USA, 2004).

[3] K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).
[4] R. Taniuchi et al., Nature (London) 569, 53 (2019).

-0.1

 0

 0.1

 0.2

Total
-2

-1

 0

 1

 2

 3

 4

0 4 8
-2

-1

 0

 1

 2

 3

 4

0 4 8 0 4 80 4 8 0 4 80 4 8

Total Total

0+
2  to  0+

1 0+
3  to  0+

2 0+
3  to  0+

1

ξ 
if

 (
m

)
M

if
 (

m
)

ef
m

2 )
 (

m

(a)

(b)

FIG. 5. (a) Overlap ξifðmÞ and (b) E0 matrix element MifðmÞ
for each m value of the mp-mh excitation. The summed E0
matrix elements

P
m0≤m Mifðm0Þ and the total values are shown

by the open and filled triangles, respectively.

PHYSICAL REVIEW LETTERS 128, 252501 (2022)

252501-5

https://doi.org/10.1016/j.cplett.2006.06.017
https://doi.org/10.1016/j.cplett.2006.06.017
https://doi.org/10.1103/RevModPhys.83.1467
https://doi.org/10.1038/s41586-019-1155-x


[5] D. Guilemaud-Mueller, C. Detraz, M. Langevin, F. Naulin,
M. de Saint-Simon, C. Thibault, F. Touchard, and M.
Epherre, Nucl. Phys. A426, 37 (1984).

[6] T. Motobayashi et al., Phys. Lett. B 346, 9 (1995).
[7] K.Wimmer, T.Kröll,R.Krücken,V.Bildstein, R.Gernhäuser,

B. Bastin et al., Phys. Rev. Lett. 105, 252501 (2010).
[8] H. T. Fortune, Phys. Rev. C 84, 024327 (2011).
[9] H. T. Fortune, Phys. Rev. C 85, 014315 (2012).

[10] A. O. Macchiavelli, H. L. Crawford, C. M. Campbell, R. M.
Clark, M. Cromaz, P. Fallon, M. D. Jones, I. Y. Lee, M.
Salathe, B. A. Brown, and A. Poves, Phys. Rev. C 94,
051303(R) (2016).

[11] A. O. Macchiavelli and H. L. Crawford, Phys. Scr. 92,
064001 (2017).

[12] K. Hadyńska-Klęk et al., Phys. Rev. C 97, 024326 (2018).
[13] E. Ideguchi, D. G. Sarantites, W. Reviol, A. V. Afanasjev, M.

Devlin, C. Baktash et al., Phys. Rev. Lett. 87, 222501 (2001).
[14] C. J. Chiara, E. Ideguchi, M. Devlin, D. R. LaFosse, F.

Lerma, W. Reviol, S. K. Ryu, D. G. Sarantites et al., Phys.
Rev. C 67, 041303(R) (2003).

[15] W. J. Gerace and A. M. Green, Nucl. Phys. A123, 241
(1969).

[16] H. T. Fortune, M. N. I. Al-Jadir, R. R. Betts, J. N. Bishop,
and R. Middleton, Phys. Rev. C 19, 756 (1979).

[17] R. Middleton, J. Garrett, and H. T. Fortune, Phys. Lett. 39B,
339 (1972).

[18] W. Bohne, K. D. Buchs, H. Fuchs, K. Grabisch, D. Hilscher,
U. Janetzki, U. Jahnke, H. Kluge, T. G. Masterson, and H.
Morgenstern, Nucl. Phys. A284, 14 (1977).

[19] W. J. Gerace and A. M. Green, Nucl. Phys.A93, 110 (1967).
[20] E. Caurier, J. Menéndez, F. Nowacki, and A. Poves, Phys.

Rev. C 75, 054317 (2007).
[21] B. Singh, R. Zywina, and R. B. Firestone, Nucl. Data Sheets

97, 241 (2002).
[22] C. E. Svensson, E. Caurier, A. O. Macchiavelli, A.

Juodagalvis, A. Poves, I. Ragnarsson, S. Åberg et al., Phys.
Rev. Lett. 85, 2693 (2000).

[23] E. Ideguchi et al., Phys. Lett. B 686, 18 (2010).

[24] J. L. Wood, E. F. Zganjar, C. De Coster, and K. Heyde, Nucl.
Phys. A651, 323 (1999).

[25] M. Ulrickson, N. Benczer-Koller, J. R. MacDonald, and
J. W. Tape, Phys. Rev. C 15, 186 (1977).
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