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We report high-precision measurements of the deeply virtual Compton scattering (DVCS) cross section
at high values of the Bjorken variable xB. DVCS is sensitive to the generalized parton distributions of the
nucleon, which provide a three-dimensional description of its internal constituents. Using the exact analytic
expression of the DVCS cross section for all possible polarization states of the initial and final electron and
nucleon, and final state photon, we present the first experimental extraction of all four helicity-conserving
Compton form factors (CFFs) of the nucleon as a function of xB, while systematically including helicity flip
amplitudes. In particular, the high accuracy of the present data demonstrates sensitivity to some very poorly
known CFFs.

DOI: 10.1103/PhysRevLett.128.252002

In this Letter, we present an experimental determination of
the four complex helicity-conserving amplitudes of the
γ�p → γp amplitude, measured in the deeply virtual
Compton scattering (DVCS) reaction ep → epγ. This
amplitude is illustrated in Fig. 1, which also defines our
kinematic nomenclature. The Bjorken limit of DVCS, first
described in [1], is defined by large virtuality Q2 and large
invariant “energy” ν ¼ q · P=M of the virtual photon at fixed
xB ¼ Q2=ð2q · PÞ and small net momentum transfer to the
proton. QCD theorems [2,3] prove the DVCS amplitude
factorizes into a hard perturbative kernel and a soft part
described by light cone matrix elements [4] of quark and
gluon operators. In this scaling limit, the γ�p → γp

amplitude reduces to just four complex amplitudes, whose
Q2 dependence is determined by QCD evolution equations
[5]. The light cone matrix elements, also called generalized
parton distributions (GPDs), encode tomographic images

k
electron

DVCS

p proton

k

p

q

+ +

Bethe-Heitler

FIG. 1. Lowest-order QED diagrams for the process ep → epγ,
including the DVCS and Bethe-Heitler (BH) amplitudes. The
external momentum four vectors are defined on the diagram. The
virtual photon momenta are q ¼ k − k0 in the DVCS amplitudes
and Δ ¼ q − q0 in the BH amplitudes. The invariants are
W2 ¼ ðqþ pÞ2, Q2 ¼ −q2 > 0, t ¼ Δ2, xB ¼ Q2=ð2p · qÞ, and
the DVCS scaling variable ξ ¼ −q̄2=ðq̄ · PÞ ≈ xB=ð2 − xBÞ, with
q̄ ¼ ðqþ q0Þ=2 and P ¼ pþ p0.
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correlating the transverse spatial and longitudinal momen-
tum distributions of quarks and gluons inside the proton,
leading to a sum rule for the separate contributions of quarks
and gluons to the spin of the proton [1].
The ep scattering kinematics in the Bjorken limit define

a preferred longitudinal axis (up to ambiguities of order
t=Q2). Light cone momenta P� ¼ ðP0 � PzÞ= ffiffiffi

2
p

and light
cone helicities of the external particles are defined with
respect to this axis. The variables x� ξ are the light cone
momentum fractions of the initial and final active quark.
The variable ξ is kinematic: ξ ≈ xB=ð2 − xBÞ, whereas x is
integrated from −1 to 1 as a consequence of the implied
quark loop. The experimental ep → epγ scattering ampli-
tude is the coherent sum of the Compton amplitude and the
Bethe-Heitler (BH) amplitude, wherein the real photon is
emitted by the incoming or the scattered electron, as
illustrated in Fig. 1.
In this analysis of the Jefferson Lab Hall A experiment

E12-06-114, we follow the Braun-Manashov-Müller-
Pirnay (BMMP) formalism [6], wherein the longitudinal
axis is defined in an event-by-event frame in which the
three vectors q and q0 are colinear. More generally, the light
cone is defined by null vectors q0 and q − q0=ð1 − t=Q2Þ. In
this reference frame, the leading four Compton amplitudes
conserve the light cone helicity of the photons. The proton
helicity dependence of the Compton amplitude is expressed
through the definition of four chiral-even Compton form
factors (CFFs) (Hþþ, H̃þþ, Eþþ, Ẽþþ), which are con-
volution integrals of the four corresponding GPDs. Each
CFF is associated with a unique nucleon-spinor matrix
element of, e.g., γþ; γþγ5;….
The reduction of the twelve Compton amplitudes to just

four amplitudes, as first described in [3] is a profound
simplification. Nonetheless in the range of Q2 and xB
currently accessible, the remaining eight chiral-odd photon
helicity-flip Compton amplitudes, while small, cannot be
completely neglected.
The HERMES Collaboration performed extensive mea-

surements of single- and double-spin DVCS asymmetries

[7–9]. The H1 [10] and ZEUS [11] Collaborations mea-
sured the DVCS cross section over a broad range ofQ2 and
W2 at low xB. The Jefferson Lab CLAS Collaboration has
measured DVCS beam spin asymmetries and cross sections
[12–14] and longitudinally polarized target asymmetries
[15–17]. Recent experimental studies on DVCS show that
the contributions of the chiral-even GPDs dominate the
DVCS amplitude already at Q2 values as low as 1.5 GeV2

[13,18,19]. However, dynamic terms involving a photon
helicity flip are not negligible, even though they are
nominally suppressed by powers of ðt;M2Þ=Q2 [20].
This Letter reports the results of experiment E12-06-114,

which ran in Hall A at Jefferson Lab in the fall of 2014 and
in 2016. Concurrent data on ep → epπ0 were published in
[21], which also includes additional experimental and
analysis details. Table I shows the nine kinematic settings
in Q2 and xB at which the DVCS cross sections were
measured. For each setting, the data are binned in t and the
azimuth ϕ of the detected photon q0 around the direction of
q, as defined by the “Trento convention” [22].
The longitudinally polarized electron beam impinged on

a 15-cm liquid hydrogen target. The beam current was
adjusted between 5 and 15 μA, depending on the kinematic
setting, in order to maintain dead time below 5%. The Hall
A Møller polarimeter measured an averaged beam polari-
zation of 86� 1%. The Hðe⃗; e0γÞX reaction was the main
trigger of the data acquisition system. The scattered
electron was detected by a coincidence signal between
the scintillators and the Cerenkov detector of the left high-
resolution spectrometer (HRS) [23]. The electron identi-
fication was further refined off-line by the use of a Pb-glass
calorimeter in the HRS. The outgoing photon was detected
by a dedicated highly segmented PbF2 electromagnetic
calorimeter. The analog signal from each of the 208
calorimeter channels was recorded over 128 ns by
1 GHz digitizing electronics based on the analog ring
sampler (ARS) chip [24,25]. Following an HRS electron
trigger (level 1), calorimeter signal sampling was stopped.
Waveform digitization was validated by a level-2 trigger

TABLE I. Main kinematic variables for each of the nine ðQ2; xBÞ settings where the DVCS cross section is reported. Eb is the incident
electron energy, Eγ and −tmin correspond to a final state photon emitted parallel to q ¼ k − k0 at the nominal Q2, xB values listed. For
each setting, the cross section is measured as a function of t (3 to 5 bins depending on the setting) and in 24 bins in ϕ. The accumulated
charge, corrected by the acquisition dead time, is listed in the row labeled

R
Qdt. The last row of the table indicates the number of

statistically independent measurements (bins) for each xB setting, including helicity dependence.

Setting Kin-36-1 Kin-36-2 Kin-36-3 Kin-48-1 Kin-48-2 Kin-48-3 Kin-48-4 Kin-60-1 Kin-60-3

xB 0.36 0.48 0.60
Eb (GeV) 7.38 8.52 10.59 4.49 8.85 8.85 10.99 8.52 10.59
Q2 (GeV2) 3.20 3.60 4.47 2.70 4.37 5.33 6.90 5.54 8.40
Eγ (GeV) 4.7 5.2 6.5 2.8 4.7 5.7 7.5 4.6 7.1
−tmin (GeV2) 0.16 0.17 0.17 0.32 0.34 0.35 0.36 0.66 0.70R
Qdt (C) 1.2 1.7 1.3 2.2 2.2 3.7 5.7 6.4 18.5

Number of data bins 672 912 480
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which computed the sum of the signal from all channels in a
80 ns window. If a signal above a programmable threshold
was found in the calorimeter, the digitization process took
128 μs; otherwise the ARS system resumed sampling after
500 ns. The level-2 trigger was based on a field-program-
mable gate array module, and was used only during high
counting rate settings (> 1 kHz). For settings with low
rates, all level-1 triggers were validated and waveforms

digitized [21]. Off-line analysis of the calorimeter signals
and regular energy calibrations resulted in an energy
resolution of 3% at 7 GeV. Missing-mass reconstruction
identified the nondetected proton (see Fig. 2). The time
resolution between the electron and photon detections was
better than 1 ns. The number of random coincidences was
evaluated by analyzing events in a time window shifted
with respect to the coincidence time of the HRS and
calorimeter signals.
An important source of background was neutral-pion

electroproduction events for which only one of the decay
photons was detected. The number of one-photon events
from π0 decays was estimated by a Monte Carlo simulation
normalized bin by bin to the number of detected π0 → γγ
events. The acceptance and resolution of the experiment
were modeled by a GEANT4 simulation. The simulation
included bin migration effects due to real and virtual
radiation and the PbF2 calorimeter energy resolution, as
described in [19]. During the data taking, the first quadru-
pole of the HRS experienced the gradual failure of its
cryogenic current lead. For the first part of the experiment,
the faulty quadrupole could only be used at a reduced
current supply. Before the fall 2016 data taking, that
quadrupole was replaced by a room-temperature quadru-
pole providing a similar magnetic field. Optics calibrations
data were taken to maintain the excellent resolution of the
HRS. Effects on the spectrometer acceptance were taken
into account for each kinematic setting and run period by

)2 (GeV2
XM

0 0.5 1 1.5
0
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1000

1500

2000

Raw counts
 contamination0π

Accidental coincidences

-accidentals)0πFinal (raw-

FIG. 2. Missing mass squared of the ep → eγX reaction for
kinematic setting Kin-48-1, integrated over t and ϕ. Experimental
data are shown in black. The subtraction of the accidental
contribution (green) and photons from π0 decays (blue) yields
the red histogram.
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FIG. 3. Helicity-independent (top) and helicity-dependent (bottom) DVCS cross section at xB ¼ 0.36 (left), xB ¼ 0.48 (center), and
xB ¼ 0.60 (right) for the values ofQ2 and t indicated on the top of each figure. Bars around the points indicate statistical uncertainty and
boxes show the total systematic uncertainty, computed as the quadratic sum of the point-to-point and correlated systematic uncertainties.
Black curves display the total fit to the cross sections, at constant xB and t, in the BMMP formalism. The BH cross section is shown in
green. The contribution from the BH-DVCS interference is shown by the blue bands, whereas the contribution from the DVCS2 term is
indicated by the red bands. All band widths correspond to one standard deviation. The KM15 model is shown in magenta.
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applying similar multidimensional cuts (R cuts, [26]) on
both the experimental and simulated data.
Deep inelastic scattering data were taken simultaneously

to the main DVCS data using an ancillary trigger for all
kinematic settings, which allowed a monitor of the scat-
tered electron detection efficiency and acceptance [21]. The
total systematic uncertainty of the DVCS cross-section
measurements includes the uncertainty on the electron
detection and acceptance, the luminosity evaluation, the
uncertainty on the photon detection, and the exclusivity.
Radiative corrections are included in the analysis based on
calculations of [27] and using the procedure described in
detail in [21].
Figure 3 shows a sample of the cross section measured at

each of the xB settings. See Supplemental Material [28] for
the full set of data. The azimuthal dependence of the cross
section is fit using the BMMP formalism [6], and the
contribution from the BH-DVCS interference and DVCS2

contributions are shown along with the BH cross section.
The BMMP calculation includes kinematic power correc-
tions ∼t=Q2 and ∼M2=Q2 that were proven to be important
at these kinematics [20]. The cross section is expressed as a
function of helicity-conserving CFFs (Hþþ, H̃þþ, Eþþ,
and Ẽþþ), longitudinal-to-transverse helicity-flip CFFs
(H0þ, H̃0þ, E0þ, and Ẽ0þ), and transverse helicity-flip
CFFs (H−þ, H̃−þ, E−þ, and Ẽ−þ). For each GPD label, the
subscripts λ, λ0 refer to the light cone helicity of the initial
(virtual) and final (real) photon, respectively. In this
formalism, the light cone is defined by linear combinations
of qμ and q0μ. Our whole dataset has been fitted using this
complete and consistent scheme, with the real and imagi-
nary part of all these CFFs being the free parameters (a total
of 24) of the fit. All kinematics bins inQ2 and ϕ at constant
ðxB; tÞ are fitted simultaneously, however possible QCD
evolution of the CFFs as functions of Q2 is not considered.
While the number of fit parameters is large, the high

accuracy of the data allows to simultaneously extract all the
helicity-conserving CFFs with good statistical uncertain-
ties. Figure 4 shows the real and imaginary part of all four
helicity-conserving CFFs as a function of xB averaged over
t. These results represent the first complete extraction of all
helicity-conserving CFFs appearing in the DVCS cross
section, including the poorly known Eþþ and Ẽþþ. The
state-of-the-art GPD parametrization KM15 [29] that
reproduces worldwide DVCS data show a reasonable
agreement but fail to describe Eþþ and Ẽþþ accurately.
As first demonstrated in [20] and described theoretically

in [30], the measurement of the DVCS cross section at two
or more values of the ep center-of-mass energy

ffiffiffi
s

p
provides statistically significant separation of the real
and imaginary parts of the BH-DVCS interference term
as well as the DVCS2 contribution in the cross sections for
polarized electrons. A new analysis [31] of all previous
JLab DVCS data followed a similar procedure, and

obtained flavor-separated Compton form factors, after
inclusion of our recent neutron DVCS data [32]. In the
present analysis, realistic error bands on the chiral-evenCFFs
are obtained by explicit inclusion of higher-order terms (e.g.,
H0þ, H−þ, etc.) in the cross section fit, with these terms
primarily constrained by inclusion of higher Fourier terms in
the azimuthal variableϕ. Although the extracted values of the
helicity-flip CFFs are largely statistically consistent with
zero, the statistical correlations between all of the CFF values
at fixed xB are essential to obtaining realistic experimental
uncertainties. Figure 5 illustrates for setting xB ¼ 0.60 the
values of CFFs as a function of t obtained when the fit
includes only the helicity-conserving CFFs (red points)
and when both helicity-conserving and helicity-flip CFFs
are included (black points). One can see that fitting only
helicity-conserving CFFs significantly underestimates their
uncertainties.
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FIG. 4. Values of the helicity-conserving CFFs, averaged over t,
as a function of xB. Bars around the points indicate statistical
uncertainty and boxes show the total systematic uncertainty. The
fit results of previous data [19] at xB ¼ 0.36 are displayed with
the open markers. The average t values are −0.281 GeV2 [19]
and −0.345, −0.702, −1.050 GeV2 at xB ¼ 0.36, 0.48, 0.60,
respectively. The solid lines show the KM15 model [29].
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The sensitivity to the CFFs E and Ẽ illustrated in Fig. 4
arises from the Q2-dependent kinematic factors weighting
these terms relative to the contributions of H and H̃. The
KM15 model [29] includes only the D term (support
limited to jxj < ξ) in the E GPD, and therefore vanishes
at x ¼ ξ, resulting in Im½E� ¼ 0. For Ẽ, this model includes
only the pion pole, via the γ�γ → π0 amplitude, and thus the
amplitude in this channel is also purely real. In contrast, the
model of [33] for E includes a valence quark contribution
with support outside the jxj < ξ bound and therefore
produces a nonzero imaginary part of the E CFF.
Similarly, the chiral quark soliton model [33,34] produces
a contribution to Ẽ that while smaller in magnitude to the
pion pole, is additive with opposite sign. This may explain
the significant difference between our values of Re½Ẽ� and
the KM15 model. GPDs can be described as momentum
decompositions of the corresponding form factors. This is
explicit in the first moment sum rules, which relate, e.g.,

GPDs E and Ẽ (summed over quark flavor f) to the axial
and pseudoscalar form factors GA and GP of the proton:

X
f

Z
1

−1

�Efðx; ξ; tÞ
Ẽfðx; ξ; tÞ

�
dx ¼

�
GAð−tÞ
GPð−tÞ

�
: ð1Þ

These form factors, particularly GP, are much less well
known experimentally than the usual electromagnetic form
factors GE;M. The present measurements of the CFFs E and
Ẽ therefore provide constraints on the quark momentum
distribution support of the corresponding form factors
within this xB range.
The present measurements will be complemented in this

same general kinematic range in the near future by
measurements in JLab Halls B and C, and longitudinally
polarized proton measurements and neutron DVCS mea-
surements in JLab Hall B. These measurements therefore
demonstrate that the full extraction of experimental
Compton form factors is within reach.
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