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We show how the index of the fermion operator from the Euclidean action can be used to uncover the
existence of gapless modes living on defects (such as edges and vortices) in topological insulators and
superconductors. The 1-loop Feynman diagram that computes the index reveals an analog of the quantum
Hall current flowing on and off the defect—even in systems without conserved currents or chiral anomalies
—and makes explicit the interplay between topology in momentum and coordinate space. We provide
several explicit examples.
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Introduction.—Defects such as domain walls, vortices,
and monopoles often host gapless bound states when
coupled to fermions [1], the existence of which can be
related to topology and anomalies [2,3]. However, their
properties vary according to the dimension and symmetries
of the bulk and defect theories. In some cases, the existence
of gapless modes can be deduced from currents flowing
onto or off of the defect, as with the integer quantum Hall
effect or lattice domain wall fermions [4,5], while in other
examples there are no such currents. Furthermore, the
topology that governs the gapless states is in momentum
space, and so the number and nature of such states can be
sensitive to how the theory is regulated at short distance
[6–8]. That too can depend on the dimension of the bulk
theory.
In this paper we demonstrate a generic framework which

can be used to identify gapless defect modes in topological
insulators and superconductors, associating all of them with
a generalized Hall current with nonzero divergence flowing
onto the defect, irrespective of whether the original theory
contains any continuous internal symmetry, conserved
currents, or chiral anomalies. This approach involves
computing the index [9] for the Dirac operator in the
Euclidean action, where one has added diagnostic back-
ground fields with nontrivial topology. (The Callias index
theorem has been discussed before in a different context,
for determining time-independent solutions to the Dirac
equation, see Refs. [10,11]. The Euclidean path integral has
been used to investigate the role of global anomalies in
topological materials [12].) The index is determined by
computing a one-loop Feynman diagram, where the inte-
gration over loop momentum can be directly related to
topological properties of the fermion dispersion relation.
We describe the method here and briefly give three explicit
examples involving Dirac and Majorana fermions in two,

three, and four spacetime dimensions. A more detailed
analysis, which includes consideration of the role of
interactions, may be found in Ref. [13].
The connection between massless states in Minkowski

spacetime and the index of the Euclidean Dirac operator is
not direct. Consider the example of a Dirac fermion in two
spacetime dimensions with D ¼ =∂þmϵðxÞ, where a
domain wall confines gapless states to the one-dimensional
line x ¼ 0. In Minkowski spacetime this would correspond
to a massless mode confined to the end of wire. In
Euclidean spacetime, the only state annihilated by D will
be one localized in the x direction but constant in Euclidean
time τ; as this is not a normalizable state it will not
contribute to the index ofD. However, we can now imagine
adding a second domain wall defect as a function of τ; if
there exists a gapless mode in the first place, it will now be
localized in two dimensions, is not a zero mode of D†, and
can contribute to the index of D, no matter how weakly the
fermion interacts with that second domain wall. If we
remove the original domain wall at x ¼ 0 eliminating the
massless edge state of interest, then the index vanishes. In
this sense, the index of the modified theory reveals the
gapless state in the original one. More generally, one can
reveal edge states by considering fermions propagating in
arbitrary background fields. We will show that when our
heuristic example of crossed domain walls is replaced by an
arbitrary, smoothly varying complex scalar field one finds
that the index is proportional to the field’s vorticity. In
higher dimensions localizing the zeromodes requires addi-
tional fields, such as gauge fields.
Our approach then is to add extra diagnostic fields to the

theory of interest and compute the index of Euclidean
spacetime operator D in a derivative expansion, along the
lines of Ref. [14]. We find that the index is proportional to a
topological invariant of these fields in coordinate space,
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times a topological invariant constructed from the fermion
dispersion relation in momentum space. A nonzero value
for the product of these winding numbers is taken to
indicate the existence of massless states in the Minkowski
version of the original theory.
As discussed in Refs. [9,10], the index of a non-

Hermitian elliptic operator D can be defined as
Ið0Þ≡ limM→0 IðMÞ, where

IðMÞ ¼ Tr

�
M2

D†DþM2
−

M2

DD† þM2

�

¼ TrΓχ
M

K þM
; ð1Þ

where

K¼
�
0 −D†

D 0

�
; Γχ ¼

�
1 0

0 −1

�
; fK;Γχg¼ 0: ð2Þ

Let us now imagine that S ¼ R
ψ̄Dψ is the Euclidean action

for a system of interest with massless edge states in (dþ 1)-
dimensional Minkowski spacetime, where we use the term
“edge states” to refer massless fermions bound to a defect
of any codimension. Then 1=ðK þMÞ looks like the
propagator in a new theory with Euclidean action

S ¼
Z

ddþ1xΨ̄ðK þMÞΨ; ð3Þ

where Ψ is a complex fermion with its own continuous
fermion number symmetry and, in the M → 0 limit, a
continuous axial symmetry, both of which are unrelated to
any symmetries of the original theory. Ψ also has twice as
many components as the physical fermions. We can now
express IðMÞ in terms of the new theory as

IðMÞ ¼ −M
Z

ddþ1xhΨ̄ðxÞΓχΨðxÞi; ð4Þ

where the quantum average is computed from a path
integral over Ψ and Ψ̄ with weight e−S. We are not
restricted to an action like S ¼ R

ψ̄Dψ which preserves
this fermion number; this analysis is relevant also for a
Minkowski theory of real fermions with Euclidean actionR
ψTCDψ , where C is the charge conjugation operator.
In the cases we will examine, K will be a linear

differential operator of the form K ¼ Γμ∂μ þ V, where
the V is some spacetime dependent matrix. Then we can
define the Noether current for the axial symmetry of
Eq. (3), J μ ¼ Ψ̄ΓμΓχΨ which obeys an anomalous
Ward-Takahashi identity

∂μJ μ ¼ 2MΨ̄ΓχΨ −A; ð5Þ

where the first term on the right is due to the explicit chiral
symmetry breaking byM, andA is the potential anomalous
contribution due to the variance of the path integral
measure [3], with

Z
ddþ1xA ¼ −2 lim

Λ→∞
TrΓχeK

2=Λ2 ¼ −2Ið∞Þ: ð6Þ

It follows then from Eq. (4) that

IðMÞ ¼ Ið∞Þ − 1

2

Z
ddþ1x∂μhΨ̄ΓμΓχΨi: ð7Þ

Therefore, to compute the index Ið0Þ one need only
compute the two terms on the right in the massless limit.
In all the cases we will consider, the anomaly A and hence
Ið∞Þ trivially vanish, and one need only compute the axial
current flowing in from infinity, which requires computing
the one loop diagram for the chiral current hΨ̄ΓμΓχΨi from
the action in Eq. (3). Note that in every case, a nontrivial
index is associated with current inflow, independently from
whether D has a continuous symmetry or anomalies. This
chiral current exists for every Minkowski theory and is
unrelated to any chiral symmetry the original Minkowski
theory might have possessed; it behaves like a generaliza-
tion of the familiar quantum Hall current and we will refer
to it as such.
Majorana fermion in 1þ 1 dimensions.—Our first

example is a massive Majorana fermion in 1þ 1 dimen-
sions. Our starting point is the Lagrangian in Minkowski
spacetime,

LM ¼ 1

2
ψTCði=∂ −mÞψ ; ð8Þ

where ψ is a real, two-component Grassmann spinor and
we can take γ0 ¼ C ¼ σ2, γ1 ¼ −iσ1, γχ ¼ σ3, where σi are
the Pauli matrices. This is the model considered in
Ref. [15], although here we do not include interactions,
and we consider the case of infinite dimensions with a
domain wall mass m ¼ m0ϵðx1Þ rather than a finite wire
with two ends. This theory has no continuous symmetries
except Lorentz symmetry; it possesses the discrete space-
time symmetries C, P, and T which play the roles as
particle-hole, sublattice, and time-reversal symmetries,
respectively, in condensed matter systems. As is easy to
see, a gapless fermion exists at x1 ¼ 0.
The Euclidean Lagrangian is obtained from the

Minkowski Lagrangian in dþ 1 dimensions as LE ¼
−LM along with the replacement ∂0 → i∂0 and a redefini-
tion of the γ matrices so that they obey the SOðdþ 1Þ
Clifford algebra (we use a mostly minus metric). In the
present example with d ¼ 1 we have LE ¼ 1

2
ψTCDψ ,

where D ¼ =∂þm with C ¼ γ0 ¼ σ2, γ1 ¼ −σ1, and
γχ ¼ σ3. Following the discussion in the introduction we
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generalize the model by replacing the mass by a scalar field
ϕ1 and add a pseudoscalar field ϕ2 so that our Euclidean
Dirac operator becomes

D ¼ ð=∂þ ϕ1 þ iϕ2γχÞ: ð9Þ

In order to compute the index ofD we next construct the
Euclidean theory L ¼ Ψ̄ðK þMÞΨ where K, is specified
by Eq. (2). The operator K can be written as

K ¼
X1
μ¼0

Γμ∂μ þ iϕ2Γ2 þ iϕ1Γ3; ð10Þ

where

Γi ¼ σ1 ⊗ γi; Γ2 ¼ σ1 ⊗ γχ ;

Γ3 ¼ −σ2 ⊗ 1; Γχ ¼ σ3 ⊗ 1; ð11Þ

with i ¼ 0, 1. The leading contribution to the current J μ in
a derivative expansion of the scalar fields is shown in Fig. 1
and is proportional to ∂θ, where we write ϕ ¼ ϕ1 þ iϕ2 ¼
veiθ and expand about θ ¼ 0. To linear order the θ vertex is
given by −ivΓ2. We define K0 ¼ Kðθ ¼ 0Þ. Taking
M → 0, the Feynman diagram yields

J μ ¼ v
∂θ

∂xν

Z
d2q
ð2πÞ2 Tr

�
ΓμΓχ

�
∂K̃−1

0

∂qν

�
Γ2K̃−1

0

�

¼ ϵμν∂νθ

Z
d2q
ð2πÞ2

4v2

ðq2 þ v2Þ2

¼ 1

π
ϵμν∂νθ: ð12Þ

The index is then computed to be

indðDÞ ¼ Ið0Þ ¼ −
1

2

Z
d2x∂μJ μ ¼

I
dθ
2π

¼ −νϕ; ð13Þ

where νϕ is the winding number of the scalar field ϕ in the
x0 − x1 plane. This result is consistent with the heuristic
example discussed in the introduction of the crossed
domain wall configuration ϕ1 ¼ mϵðx1Þ, ϕ2 ¼ μϵðx0Þ with
m > 0, μ > 0, for which one finds νϕ ¼ −1. We see that the
index of the Euclidean Dirac operator D reveals the
existence of massless edge state in the presence of non-
trivial spatial topology for the background ϕ field.

The above calculation does not fully reveal the topo-
logical nature of the edge state, however, and one might still
ask as to why the Feynman integral over momentum results
in an integer for the index rather than some arbitrary real
number. To address this we borrow the techniques of
Refs. [6,16] to show that the Feynman integral is actually
computing a winding number. The result in Eq. (12) is
unchanged if we substitute for the skew diagonal blocks
in K0

D0 → ξ≡ D0ffiffiffiffiffiffiffiffiffiffiffiffi
detD0

p ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þv2

p þ iq̂μγμ
qffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2þv2
p ; ð14Þ

where D0 ¼ Djθ¼0, while D
†
0 is replaced by ξ†. The matrix

ξ is unitary and the generalized Hall current in Eq. (12) may
be written in terms of ξ as

J μ ¼
i
2
ϵμν∂νθϵστ

Z
d2q
ð2πÞ2 Trγχ ½ðξ

†
∂σξÞðξ†∂τξÞ

þ ðξ∂σξ†Þðξ∂τξ†Þ�: ð15Þ

The momentum integral can be shown to be the winding
number associated with the map UðqÞ ¼ ξ2ðqÞ from
momentum space to S2 (see Ref. [13] for details), where

U ¼ v2 − q2

v2 þ q2
þ 2ivq
v2 þ q2

≡ aðqÞ þ i=bðqÞ: ð16Þ

Since a2 þ bibi ¼ 1, U describes a unit 3-vector, which
lives on S2. We see that all possible points on S2 correspond
to a unique value of the 2-momentum qi, except that the
limit of infinite momentum in any direction gets mapped to
U ¼ −1. So momentum space has itself been compactified
to S2, and U describes a nontrivial map in the homotopy
group π2ðS2Þ ¼ Z. The winding number νq ¼ 1 of this map
is computed by the above integral, and we have the result
for the index

indðDÞ ¼ −νϕνq: ð17Þ

Now the full topological meaning of the index is manifest
and it is evident how a Feynman diagram can produce an
integer. In general the index can change only at values for
the parameters in the theory when our substitution in
Eq. (14) fails, namely, where detD0 vanishes for some
momentum; such singularities are equivalent to the bulk

FIG. 1. Loop diagrams for computing the generalized Hall current for the 1þ 1 (left), 2þ 1 (center), and 3þ 1 (right two) dimension
examples. The black dot is an insertion of the chiral current ΓμΓχ , and the propagators are K−1.
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gap vanishing, allowing the zero mode to delocalize, and
can only happen in this case when v ¼ 0.
As a last comment on this model, the anomaly termA in

Eq. (6) vanishes because the trace over momenta gives a
factor of Λ2 in two dimensions, while a nonzero Γ matrix
trace requires two powers of K2=Λ2, since the Γ matrices
behave like those for SO(4), and hence A vanishes in the
limit Λ → ∞.
Topological insulator in 3þ 1 dimensions.—We next

compute the index for a topological insulator in 3þ 1
dimensions, consisting of a Dirac fermion with a domain
wall mass [11]. The domain wall in this case is a 2þ 1
dimensional defect hosting massless fermions. In order to
construct the current-inflow picture we consider the follow-
ing Euclidean Lagrangian

LE ¼ ψ̄Dψ ; D ¼ =Dþ ϕ1 þ iϕ2γ5; ð18Þ

where ϕ1 takes the place of the Dirac mass, and ϕ2 is a
diagnostic background scalar field needed to localize the
edge mode as in the previous example. More background
fields are required in higher dimensions to localize a zero
mode, and to that end we include an Abelian gauge field in
addition to ϕ1;2. The operator K in Eq. (2) is given by

K ¼
�

0 −D†

D 0

�
¼

X3
a¼0

ΓaDa þ iϕ2Γ4 þ iϕ1Γ5; ð19Þ

our basis for the 8 × 8 Γ-matrices being

Γa ¼ σ1 ⊗ γa; a ¼ 0;…; 3;

Γ4 ¼ σ1 ⊗ γ5; Γ5 ¼ σ2 ⊗ 1; ð20Þ

with Γχ ¼ σ3 ⊗ 1. We must now compute the divergence
of the chiral current, hΨ̄ΓμΓχΨi, where again the mismatch
between the four spacetime dimensions, and 8 × 8 Γ
matrices ensures that the anomaly A in Eq. (6) vanishes.
Computing in a derivative expansion requires evaluating
the two diagrams to the right in 1, with the M ¼ 0 result

J μ ¼ hΨ̄ΓμΓχΨi ¼
νq
2π2

ϵμαβγFαβ∂γθ; ð21Þ

with ϕ ¼ ϕ1 þ iϕ2 ¼ ρeiθ. Similar to the previous exam-
ple, νq ¼ 1 is a winding number computed by the Feynman
loop integral of the map frommomentum space to the space
of spinor orientations defined by the bulk fermion propa-
gator. In this case we find the map to be an element of
π4ðS4Þ ¼ Z [13].
When we consider the case of the domain wall mass

profile in the original theory, we have ϕ1 ¼ m0ϵðx3Þ; a
suitable background field configuration for ϕ2 and A to
localize a massless edge state is the monopole configura-
tion discussed in Ref. [17] with couplings set to e ¼ 1 and
g ¼ 2π:

A ¼ −
ð1þ cos θÞeφ

2r sin θ
; ϕ2 ¼ α −

1

2r
; ð22Þ

where fr; θ;φg are polar coordinates for the Euclidean
space spanned by fx0; x1; x2g. In this background we can
compute the index − 1

2

R
d4x∂μJ μ, finding

Z
d4x∂μJ μ ¼

�
1þ α

jαj
�

⇒ indðDÞ ¼ −θðαÞ: ð23Þ

This nontrivial index indicates the existence of gapless
edge states: a transition in a topological quantity such as the
gap is only possible when fields become delocalized, and
so we see that happens at α ¼ 0, indicating no other scale
exists in the low energy spectrum of the theory. Our result
Eq. (21) can equally be applied to identify a massless
fermion bound to a magnetic monopole, by adding an
external scalar field in the form of a vortex. The index is
negative when nonzero because the field configuration in
Eq. (22) causes D† to have a zeromode when a massless
edge state is present, instead of D.
Majorana fermions in 2þ 1 dimensions.—For our third

example we next consider a two component complex
fermion ψ in 2þ 1 dimensions with both a constant
Majorana mass term μ and a real Dirac mass term
mðx1Þ. This theory is known to describe chiral topological
superconductors [18–20]. Nonzero μ breaks the Uð1Þ
fermion number symmetry of the Dirac theory to Z2.
When mðx1Þ has a domain wall profile there appear zero,
one, or two massless Majorana-Weyl fermions on the
defect, depending on the ratios m�=μ, where �m� are
the asymptotic values of mðx1Þ at x1 ¼ �∞.
In Minkowski spacetime the Lagrangian for this system

may be written as

LM ¼ ψ̄ði=∂ −mÞψ þ i
μ

2
ψTCψ þ i

μ

2
ψ̄Cψ̄T; ð24Þ

where M is real, μ is real and positive, and we can work in
the explicit basis γ0 ¼ σ2, γ1 ¼ −iσ1, γ2 ¼ iσ3 and C ¼ σ2.
After rotating to Euclidean spacetime, decomposing into its
real and imaginary parts ψ ¼ χ1 þ iχ2 with real 2-compo-
nent spinors χi, and then defining ζ� ¼ ðχ1 � χ2Þ=

ffiffiffi
2

p
, one

can write the Euclidean Lagrangian as

LE¼
1

2
½ζTþCDþζþþζT−CD−ζ−�; D�¼=∂þðm�μÞ; ð25Þ

where the gamma matrices are given by C ¼ γ0 ¼ σ2,
γ1 ¼ −σ1, γ2 ¼ σ3. The index will then be the sum of the
indices of Dþ and D−. To compute them we add a gauge
field as the diagnostic field, construct K� from D�, and
compute the generalized Hall current from the second
Feynman diagram in Fig. 1 to leading order in a derivative
expansion. Consider the case μ ¼ 0; then the current for
either of the ζ� may be written as [13]
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J α¼−ϵαβγ∂γAβ

�
1

3
ϵijk

�

×
Z

d3q
ð2πÞ3Tr½ðD̃

−1
0 ∂iD̃0ÞðD̃−1

0 ∂jD̃0ÞðD̃−1
0 ∂kD̃0Þ�; ð26Þ

where for D0 we take D�jAμ¼0. To understand the under-
lying topology we can define

UðqÞ ¼ D̃0ðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det D̃0ðqÞ

q ≡ cos
θ

2
þ i=̂θ · γ sin

θ

2
; ð27Þ

where θ is a real 3-vector with θ ¼ jθj and

cos
θ

2
¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þq2
p ; sin

θ

2
¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þq2
p ; θ̂¼ q̂; ð28Þ

which allows us to rewrite the expression for the current as

J α ¼ −
1

π
ϵαβγ∂γAβ

�
1

24π2
ϵijk

�

×
Z
θ≤π

d3θTr½ðU†
∂iUÞðU†

∂jUÞðU†
∂kUÞ�; ð29Þ

with ∂iU≡ ∂U=∂θi. The integral looks like the winding
number of a map from momentum space compactified to
S3, to SUð2Þ ≅ S3, except that the integral is only over half
of S3. The problem can be seen in Eq. (27): cos θ=2 ≥ 0 for
all momenta, so U cannot take on all values in SU(2).
The problem is solved when the theory is regulated.
With a Pauli-Villars regulator one substitutes DðmÞ →
DðmÞ=DðΛÞ and takes the Λ → ∞ limit. The result is that
U → Ureg in Eq. (29) where

UregðqÞ¼
D̃regðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detD̃regðqÞ

q ≡cos
θreg
2

þ iθ̂reg ·γsin
θreg
2

; ð30Þ

where θ̂reg ¼ q̂ as before, and

cos
θreg
2

¼ Λmþ q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ q2ÞðΛ2 þ q2Þ

p : ð31Þ

Now we have UregðqÞ⟶
q→∞ ¼ 1, while Uregð0Þ ¼ sgnðmΛÞ.

This regulated theory describes a well-defined map S3 →
S3 which is nontrivial if m and Λ have the opposite signs,
and trivial if they do not. On replacing m → mðxÞ � μ and
integrating the divergence of the generalized Hall current
over Euclidean spacetime, we arrive at the result for the
index for the whole system

indðDÞ ¼ νAνq; ð32Þ

where

νA ¼ 1

2π

I
A · dl;

νq ¼ θðmþ þ jμjÞ þ θðmþ − jμjÞ
− θðm− þ jμjÞ − θðm− − jμjÞ; ð33Þ

where we have assumed that μ is spatially constant while

mðxÞ ⟶x→�∞
m�. Note that νq can take on the values

0;�1;�2 depending on the relative values of m� and μ.
Once can verify that this result agrees with explicit edge
state solutions to the equations of motion [13], and we see
that the generalized Hall current is sensitive to topological
phase transitions as one varies parameters in the theory.
Discussion.—We have shown how gapless fermion

modes bound to defects or solitons in various dimensions
may be detected by computing the index of the Euclidean
Dirac operator in the presence of additional background
fields. The method involves determining the divergence of
a generalized Hall current via a 1-loop Feynman integral,
which calculates a topological winding number of the
fermion propagator, the field theoretic generalization [6,21]
of the TKNN result [7]. Regularization is required to make
topological sense of the result in odd spacetime dimen-
sions. These currents can be computed for systems without
chiral symmetries or anomalies, and generalize the concept
of the Hall current. The examples considered here are in the
BDI,D, andDIII topological classes in one, two, and three
spatial dimensions, respectively; each is known to have a
topological invariant taking values inZ, and so perhaps it is
not surprising that in each case we find momentum space
topology governed by the homotopy groups πnðSnÞ ¼ Z.
However, in Ref. [13] we show this method correctly
identifies the edge state spectrum for the D class in one
spatial dimension, with topological invariant Z2, yet
surprisingly, even in that case the momentum space top-
ology of the generalized Hall current is given by πnðSnÞ. It
remains to be seen how comprehensive our approach is,
whether it can be applied to theories with interactions, and
whether this generalized Hall current has any experimental
implications in Minkowski spacetime.
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