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We investigate entanglement detection when the local measurements only nearly correspond to those
intended. This corresponds to a scenario in which measurement devices are not perfectly controlled, but
nevertheless operate with bounded inaccuracy. We formalize this through an operational notion of
inaccuracy that can be estimated directly in the lab. To demonstrate the relevance of this approach, we show
that small magnitudes of inaccuracy can significantly compromise several well-known entanglement
witnesses. For two arbitrary-dimensional systems, we show how to compute tight corrections to a family of
standard entanglement witnesses due to any given level of measurement inaccuracy. We also develop
semidefinite programming methods to bound correlations in these scenarios.
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Introduction.—Deciding whether an initially unknown
state is entangled is one of the central challenges of
quantum information science [1–3]. The most common
approach is the method of entanglement witnesses, in
which one hypothesises that the state is close to a known
target and then finds suitable local measurements that can
reveal its entanglement [4–6]. In principle, this allows for
the detection of every entangled state. However, it crucially
requires the experimenter to flawlessly perform the stipu-
lated quantum measurements. This is an idealization to
which one may only aspire: even for the simplest system of
two qubits, small alignment errors can cause false positives
[7,8]. In contrast, by adopting a device-independent
approach, any concerns about the modelling of the meas-
urement devices can be dispelled. This entails viewing
them as quantum black boxes and detecting entanglement
through the violation of a Bell inequality [9,10]. However,
Bell experiments are practically demanding [11]. Also,
many entangled states either cannot, or are not known to,
violate any Bell inequality [12,13]. In addition, for the
common purpose of verifying that a nonmalicious entan-
glement source operates as intended, a device-independent
approach is to use a sledgehammer to crack a nut. In the
interest of a compromise, entanglement detection has also
been investigated in steering scenarios, in which some
devices are assumed to be perfectly controlled and others
are quantum black boxes [14]. Nevertheless, such asym-
metry is often not present in nonmalicious scenarios, and
the approach still suffers from drawbacks similar to both
the device-independent case, albeit it milder, and the
standard, fully controlled, scenario. A much less explored
compromise route is to only assume knowledge of the
Hilbert space dimension [15,16]. This essentially adopts
the view that the experimenter has no control over the

relevant degrees of freedom. Such ideas have also
been used to strengthen steering-based entanglement
detection [17].
Here, we introduce an approach to entanglement detec-

tion that neither assumes flawless control of the measure-
ments nor views them as mostly uncontrolled operations.
The main idea is that an experimenter can quantitatively
estimate the accuracy of their measurement devices and
then base entanglement detection on this benchmark. Such
knowledge naturally requires a fixed Hilbert space dimen-
sion: the experimenter knows the degrees of freedom on
which they operate. To quantify the inaccuracy between the
intended target measurement and the lab measurement, we
use a simple fidelity-based notion that can handily be
measured experimentally.
In what follows, we first establish the relevance of small

inaccuracies by showcasing that the conclusions of well-
known entanglement witnesses can be substantially com-
promised. We show that the magnitude of detrimental
influence associated to a small inaccuracy does not have
to decrease for higher-dimensional systems. This is impor-
tant because higher-dimensional entangled systems are
increasingly interesting for experiments [18–22] but typ-
ically cannot be controlled as precisely as qubits. Second,
we develop entanglement criteria that explicitly take the
degree of inaccuracy into account. For two-qubit scenarios,
we provide this based on the simplest entanglement witness
and the Clauser-Horne-Shimony-Holt (CHSH) quantity.
For a pair of systems of any given local dimension, we
show that such criteria can be analytically established as
corrections to a simple family of standard entanglement
witnesses. Finally, we present semidefinite programming
(SDP) relaxations for bounding the set of quantum corre-
lations under measurement inaccuracies. We use this both
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to estimate the potentially constructive influence of meas-
urement inaccuracy on entanglement-based correlations
and to systematically place upper bounds for separable
states on linear witnesses.
Framework.—We consider sources of bipartite states

ρ ¼ ρAB of local dimension d. The subsystems are mea-
sured individually with settings x and y respectively,
producing outcomes a; b ∈ f1;…; og. The experimenter’s
aim is to measure the first (second) system using a set of
projective measurements fÃajxg (fB̃bjyg). These are called
target measurements. However, the measurements actually
performed in the lab do not precisely correspond to the
targeted measurements, but instead to positive operator-
valued measures (POVMs) fAajxg (fBbjyg). These are
called lab measurements and do not need to be projective.
The correlations in the experiment are given by the Born
rule

pða; bjx; yÞ ¼ tr½Aajx ⊗ Bbjyρ�: ð1Þ

We quantify the correspondence between each of the target
measurements and the associated lab measurements
through their average fidelity,

FA
x ≡ 1

d

Xo
a¼1

tr½AajxÃajx�; FB
y ≡ 1

d

Xo
b¼1

tr½BbjyB̃bjy�: ð2Þ

The fidelity respects F ∈ ½0; 1� with F ¼ 1 if and only if
the lab measurement is identical to the target measurement.
Importantly, the fidelity admits a simple operational inter-
pretation: it is the average probability of obtaining outcome
a (b) when the lab measurement is applied to each of the
orthonormal states spanning the eigenspace of the ath (bth)
target projector. Thus, the fidelities fFA

x ;FB
y g can be

directly determined by probing the lab measurements with
single qudits from a well-calibrated, auxiliary, source. This
requires no entanglement and can routinely be achieved;
see, e.g., Ref. [23]. It motivates the assumption of a
bounded inaccuracy, i.e., a lower bound on each of the
fidelities,

FA
x ≥ 1 − εAx ; FB

y ≥ 1 − εBy ; ð3Þ

where the parameter ε ∈ ½0; 1� is the inaccuracy of the
considered lab measurement. In the extreme case of ε ¼ 0,
the lab measurement is identical to the target measurement
and our scenario reduces to a standard entanglement
witness. In the other extreme, ε ¼ 1, only the Hilbert
space dimension of the measurement is known. Away from
these extremes, one encounters the more realistic scenario,
in which the experimenter knows the degrees of freedom,
but is only able to control them up to a limited accuracy.
The simplest tests of entanglement use the minimal

number of outcomes (o ¼ 2). In such scenarios the fidelity
constrains (3) can be simplified into

trðAxÃxÞ ≥ dð1 − 2εAx Þ; trðByB̃yÞ ≥ dð1 − 2εBy Þ; ð4Þ

where we have defined observables Ax ≡ A1jx − A2jx and
By ≡ B1jy − B2jy. The observables can be arbitrary
Hermitian operators whose extremal eigenvalue is bounded
by unity, i.e., kAxk∞ ≤ 1 and kByk∞ ≤ 1.
Notice that the proposed framework immediately

extends also to multipartite scenarios.
Impact of inaccuracies in entanglement witnessing.—A

crucial motivating question for our approach is whether,
and to what extent, small inaccuracies in the measurement
devices (ε ≪ 1) impact the analysis of a conventional
entanglement witness. We discuss this matter based on
several well-known witnesses.
First, consider the simplest entanglement witness for two

qubits, involving two pairs of local Pauli observables:
W ¼ hσX ⊗ σXi þ hσZ ⊗ σZi. For separable states we have
W ≤ Wsep ¼ 1 and for entangled states W ≤ Went ¼ 2.
Consider now that the lab observablesfA1; A2g andfB1; B2g
only nearly correspond (4) to the target observables
fσX; σZg. Since Went ¼ 2 is algebraically maximal, it
remains unchanged, but such is not the case for the separable
boundWsep. Thanks to the simplicity ofW, we can precisely
evaluate Wsep in the prevalent scenario when all measure-
ment devices are equally inaccurate, i.e., εAx ¼ εBy ¼ ε. For
a product state, we have W ¼ hA1ihB1i þ hA2ihB2i ≤ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA1i2 þ hA2i2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hB1i2 þ hB2i2

p
. Since the targetmeasure-

ments are identical on both sites and the factors are
independent, they are optimally chosen equal. Then, it is
easily shown that the optimal choice of Bloch vectors
corresponds to aligning A1 and A2 (B1 and B2) to the extent
allowed by ε. This leads to the following tight condition for
entanglement detection (see Supplemental Material [24])

WsepðεÞ ¼ 1þ 4ð1 − 2εÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εð1 − εÞ

p
; ð5Þ

when ε ≤ 1
2
− ð1=½2 ffiffiffi

2
p �Þ and Wsep ¼ 2 otherwise.

Importantly, the derivative diverges at ε → 0þ. Hence, a
small ε induces a large perturbation in the ideal (ε ¼ 0)
separable bound. In the vicinity of ε ¼ 0, it scales as
Wsep ∼ 1þ 4

ffiffiffi
ε

p
. For example, ε ¼ 0.5% leads to

WsepðεÞ ≈ 1.28, which eliminates over a quarter of the range
in which standard entanglement detection is possible, indi-
cating the relevance of false positives.
Second, consider the CHSH quantity for entanglement

detection, namely W¼hσX⊗ðσXþσZÞiþhσZ⊗ðσX−σZÞi.
Here, we have targeted observables optimal for violating
the CHSH Bell inequality [25]. One has Wsep ¼

ffiffiffi
2

p
and

Went ¼ 2
ffiffiffi
2

p
. In contrast to the previous example, the fact

that all correlations from d-dimensional separable states
constitute a subset of all correlations based on local hidden
variables implies that entanglement can be detected for any
value of ε. However, as we show in Supplemental Material
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[24] through an explicit separable model that we conjecture
to be optimal, this fact does not qualitatively improve the
robustness of idealized (ε ¼ 0) entanglement detection to
small inaccuracies. We obtain

Wsep ¼ 4ð1 − 2εÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εð1 − εÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 16εð1 − εÞð1 − 2εÞ2

q
;

ð6Þ

when ε ≤ 1
2
− ð1=½2 ffiffiffi

2
p �Þ andWsep ¼ 2 otherwise. For small

ε, we find Wsep ∼
ffiffiffi
2

p þ 4
ffiffiffi
ε

p
. An inaccuracy of ε ¼ 0.5%

ensures Wsep ≳ 1.67, which eliminates nearly a fifth of the
range in which standard entanglement detection is possible.
Interestingly, it is a priori not clear how small ε should

impact standard entanglement witnessing as d increases. On
the one hand, the impact ought to increase due to the
increasing number of orthogonal directions in Hilbert space.
On the other hand, it ought to decrease due to the growing
distances in Hilbert space. For instance, the ε required to
transform the computational basis into its Fourier transform
scales as ε ¼ ð ffiffiffi

d
p

− 1=
ffiffiffi
d

p Þ, which rapidly approaches
unity. To investigate the trade-off between these two effects,
we consider the d-dimensional generalization of the simplest
entanglement witness. Both subsystems are subject to the
same pair of target measurements, namely the computational
basis fjeiigdi¼1 and its Fourier transform fjfiigdi¼1, where
jfii ¼ Ωjeii with Ωjk ¼ ð1= ffiffiffi

d
p Þeð2πi=dÞjk. The witness is

WðdÞ ¼ P
d
i¼1hei; eijρjei; eii þ hfi; fijρjfi; fii. Notice that

for d ¼ 2 this only differs from the previous, simplest,

witness by a normalization term. One has WðdÞ
sep ¼

1þ ð1=dÞ and WðdÞ
ent ¼ 2 [26]. Allowing for measurement

inaccuracy, we use an alternating convex search algorithm to
numerically optimize over the lab measurements and shared

separable states to obtain lower bounds on WðdÞ
sepðεÞ. See

Supplemental Material [24] for details about the method. In
order to compare the impact of measurement inaccuracy for
different dimensions, we consider the following ratio
between the entangled-to-separable gap in the inaccurate

and ideal case, Δ≡ f½WðdÞ
ent ð0Þ −WðdÞ

sepðεÞ�=½WðdÞ
ent ð0Þ−

WðdÞ
sepð0Þ�g ¼ ðd=d − 1Þ½2 −WðdÞ

sepðεÞ�. Notice that the

numerator features WðdÞ
ent ð0Þ instead of WðdÞ

ent ðεÞ because ε
is not in itself a resource for the experimenter. The results of
the numerics are illustrated in Fig. 1 for some different
choices of ε. We observe that Δ is not monotonic in d, but
instead features a maximum, that shifts downward in d as ε
increases. Beyond this maximum point, the impact of
measurement inaccuracies grows as the dimension becomes
large.
Finally, for multipartite qubit states, it is natural to expect

that the detrimental influence of small ε grows with the
number of qubits under consideration. The reason is that
measurement inaccuracies can accumulate separately in the

different subsystems. This intuition is confirmed by the
models of Ref. [8], in which small alignment errors are used
to spoof, with increasing magnitude, the standard fidelity-
based witness of genuine multipartite entanglement for
Greenberger-Horne-Zeilinger states [27]. This further con-
firms the need of considering measurement inaccuracies.
High-dimensional entanglement criterion.—In view of

the relevance of small measurement inaccuracies, it is
natural to formulate entanglement criteria that take them
explicitly into account beyond the simplest, two-qubit,
scenario. Consider a pair of d-dimensional systems and n ∈
f1;…; d2 − 1g measurements. For system A, the observ-
ables ideally correspond to (subsets of) a generalized Bloch
basis fλigni¼1 and for system B, the ideal observables are the
complex conjugates fλ̄igni¼1. Here, λi is d dimensional,
traceless, and satisfies trðλiλ†jÞ ¼ dδij [28]. Defining

ρ ¼ ð1=dÞð1þP
d2−1
i¼1 μiλiÞ, one has kμ⃗k2 ≤ d − 1. A sim-

ple standard entanglement witness, based on a total of n
measurements, is then given by

WðdÞ ¼
Xn
i¼1

hλi ⊗ λ̄ii: ð7Þ

Using Hölder’s inequality, one finds that separable states

obey WðdÞ
sep ¼ d − 1. When the choice of Bloch basis is

fixed, entangled states can achieve at most WðdÞ
ent ¼

νmax½
P

n
i¼1 λi ⊗ λ̄i�, by choosing the state as the eigenvector

corresponding to the largest eigenvalue (νmax). When the
choice of Bloch basis is not fixed, a general upper

bound for entangled states is WðdÞ
ent ≤ minf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðd2 − 1Þ

p
;

nðd − 1Þg, as shown in Supplemental Material [24]. Note
that nðd − 1Þ is relevant only when d ¼ 2. Notice also that
the maximally entangled state jϕþ

d i ¼ ð1= ffiffiffi
d

p ÞPd−1
i¼0 jiii

achieves WðdÞ ¼ n regardless of the choice of Bloch basis.

FIG. 1. Numerically obtained lower bounds on the relative
magnitude of the entangled-to-separable gap Δ for entanglement
witnessing based on two conjugate bases at different degrees of
measurement inaccuracy ε ∈ f0.5%; 1%; 2%; 3%; 5%; 10%g.
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Consider now that the lab observables only nearly
correspond to fλig and fλ̄ig, respectively. We write them
as Ai ¼ qλi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

p
λ⊥i and Bi ¼ qλ̄i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

p
λ̄⊥i ,

where q ∈ ½−1; 1� is related to the inaccuracy through q ¼
1–2ε and λ⊥i and λ̄⊥i are observables orthogonal to λi and λ̄i,
respectively, on the generalized Bloch sphere. In
Supplemental Material [24], we prove that the witness
WðdÞ ¼ P

n
i¼1hAi ⊗ Bii for separable states obeys

WðdÞ
sepðεÞ ≤ ðd − 1Þðqþ

ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

q
Þ2; ð8Þ

when q ≥ ð1= ffiffiffi
n

p Þ and otherwise WðdÞ
sepðεÞ ≤ nðd − 1Þ,

which is algebraically maximal. As is intuitive, the window
for detecting entanglement shrinks as ε increases.
We investigate the tightness of the bound. To this end,

choose the state as jϕ†i ⊗ jϕTi, where the local Bloch vector
is μi ¼ ð ffiffiffiffiffiffiffiffiffiffiffi

d − 1
p

=
ffiffiffi
n

p Þ and where λi → λ†i (λi → λTi ) for jϕ†i
(jϕTi). Choose the observables as Ai ¼ qλi þP

j≠ið
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

p
=

ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p Þλj and Bi¼ qλ̄iþ
P

j≠ið
ffiffiffiffiffiffiffiffiffiffiffiffi
1−q2

p
=ffiffiffiffiffiffiffiffiffiffi

n−1
p Þλ̄j. This returns the separable bound (8). However,
we need to check that the Bloch vector μ⃗ corresponds to a
valid state. Curiously, for the most powerful case, namely
n ¼ d2 − 1, tightness would be implied by a positive answer
to the long-standing open question of whether there exists a
Weyl-Heisenberg covariant symmetric informationally com-
plete (SIC) POVM in dimension d. To see the connection,
simply choose the Bloch basis as the non-Hermitian
Weyl-Heisenberg basis fXuZvg for u; v ∈ f0;…; d − 1g
and uþ v > 0, where X ¼ P

d−1
k¼0 jkþ 1ihkj and

Z ¼ P
d−1
k¼0 e

ð2πik=dÞjkihkj. It follows immediately that
jhϕjXuZvjϕij ¼ ð1= ffiffiffiffiffiffiffiffiffiffi

dþ1
p Þ, which defines a SIC POVM.

Since these SIC POVMs are conjectured to exist in all
dimensions [29], and are known to exist up towell above the
first hundreddimensions [30,31], our bound is plausibly tight
for any d.
SDP methods.—We develop a hierarchy of SDP relax-

ations to bound the largest possible value of any linear
witness, W ¼ P

a;b;x;y cabxypða; bjx; yÞ, for some real
coefficients cabxy. The method applies both for correlations
originating from entangled states and from separable states,
under any given degree of measurement inaccuracy and
arbitrary target measurements. Thus, we systematically
establish upper bounds W↑

entðεÞ ≥ WentðεÞ and W↑
sepðεÞ ≥

WsepðεÞ. This has a threefold motivation. First, Went will

generally depend on ε; cases with WðdÞ > WðdÞ
ent ð0Þ can be

observed when the inaccuracies accumulate in a construc-
tive way (e.g., a favorable systematic error in the local
reference frames). It is relevant to bound such occurrences.
Second, knowledge of W↑

entðεÞ allows an experimenter to
give lower bounds on the inaccuracy of the measurement
devices. Third, and most importantly, this enables a general

and systematic construction of entanglement witnesses of
the form W ≤ W↑

sepðεÞ.
We discuss the main features of the method for comput-

ing W↑
entðεÞ and then see how it can be extended to also

compute W↑
sepðεÞ. To this end, as is standard, the SDP

relaxation method is based on the positivity of a moment
matrix. This matrix consists of traces of monomials (in the
spirit of, e.g., [32]) which are composed of products of the
state, the lab measurements, and the target measurements
(see Supplemental Material [24] for specifics). Moments
corresponding to products of the first two can be used to
build a generic linear witness W via Eq. (1). Moments
corresponding to products of the final two can be used to
build the constraints on the fidelities FA

x and FB
y . Our

construction draws inspiration from two established ideas.
First, one can capture the constraints of d-dimensional
Hilbert space, on the level of the moment matrix, by
numerically sampling states and measurements [33].
Second, in scenarios without entanglement, constraints
capturing the fidelity of a quantum state with a target
can be incorporated into the moment matrix [34]. We adapt
the latter to entanglement-based scenarios and measure-
ment fidelities as needed for Eq. (3). Details are given in
Supplemental Material [24]. We have applied this method,
at low relaxation level, in several different case studies in
low dimensions and frequently found that the obtained
upper bounds coincide with those obtained from interior
point optimization routines. We note that the computational
requirements for this tool can be much reduced since
sampling-based symmetrization methods of Ref. [35] can
straightforwardly be incorporated.
To extend this method for the computation of W↑

sepðεÞ,
we must incorporate constraints on the set of quantum
states. Since the set of separable states is generally difficult
to characterize (see, e.g., Ref. [36]), we instead adopt an
approach in which we use the ideal entanglement witness
condition, W ≤ Wsepð0Þ, which we may realistically
assume to possess, in place of the set of separable states.
Then, since the probabilities associated to performing the
target measurements on the state explicitly appear in our
moment matrix, we can introduce it as an additional linear
constraint in our SDP. Hence, the optimization is effectively
a relaxation of the subset of entangled states for which the
original entanglement witness holds. In fact, since the set of
separable states is characterized by infinitely many linear
entanglement witnesses, one can in this way continue to
introduce linear standard witnesses to constrain the effec-
tive state space in the SDP and thus further improve the
accuracy of the bound W↑

sepðεÞ. In Supplemental Material
[24] we exemplify the use of this method, in its basic
version, using only a single witness constraint W ≤
Wsepð0Þ on the state space, and show that it returns
nontrivial, albeit not tight, bounds for two simple entan-
glement witnesses for relevant values of ε.
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Discussion.—We have introduced and investigated
entanglement detection when the measurements only
nearly correspond to those intended to be performed in
the laboratory. We have shown the relevance of the concept,
presented explicit entanglement witnesses that take meas-
urement inaccuracy into account, and finally shown how
SDP methods can be applied to these types of problems.
These results are a step toward a theoretical framework for
detecting entanglement based on devices that are quanti-
tatively benchmarked in an operationally meaningful and
experimentally accessible manner.
Our Letter leaves several natural open problems. If given

an arbitrary standard entanglement witness, how can we
compute corrections due to the introduction of measure-
ment inaccuracies? Our SDP method is a first step toward
addressing this problem but better methods are necessary
both in terms of computational cost and in terms of the
accuracy of the separable bound. Moreover, for a given d,
what is the smallest number of auxiliary global measure-
ment settings needed to eliminate the diverging derivative
for optimal standard entanglement witnesses under small
measurement inaccuracy? In addition, can one extend our
entanglement witnesses to witnesses of genuine higher-
dimensional entanglement, e.g., by detecting the Schmidt
number? Also, in this first work, we have focused on
bipartite entanglement. It would be interesting to identify
useful entanglement witnesses for multipartite states at
bounded measurement inaccuracy. Finally, the framework
proposed here for entanglement detection draws inspiration
from ideas proposed in semi-device-independent quantum
communications. Given that several frameworks for semi-
device independence recently have been proposed [34,37–
40], there may be other similarly inspired avenues for
entanglement detection based on quantitative benchmarks.
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