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We probe local phase fluctuations of trapped two-dimensional Bose gases using matter-wave
interferometry. This enables us to measure the phase correlation function, which changes from an
algebraic to an exponential decay when the system crosses the Berezinskii-Kosterlitz-Thouless (BKT)
transition. We determine the temperature dependence of the BKT exponent η and find the critical value
ηc ¼ 0.17ð3Þ for our trapped system. Furthermore, we measure the local vortex density as a function of the
local phase-space density, which shows a scale-invariant behavior across the transition. Our experimental
investigation is supported by Monte Carlo simulations and provides a comprehensive understanding of the
BKT transition in a trapped system.
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One of the most intriguing phase transitions is the
Berezinskii-Kosterlitz-Thouless (BKT) transition, which
lies within theXY universality class [1,2]. Two-dimensional
(2D) systems in this universality class display quasi-long-
range order at nonzero temperatures below the transition,
whereas true long-range order is precluded by thermal
fluctuations [3,4]. Above the transition, the system forms
a disordered state. This transition is characterized by the
first-order correlation function g1ðr; r0Þ ¼ hΨ†ðrÞΨðr0Þi,
whereΨðrÞ is the bosonic field operator at location r, which
changes from algebraic scaling∼r−η in the superfluid phase,
to exponential scaling in the thermal phase, with universal
exponent ηBKT ¼ 0.25 at the transition. The origin of this
change is the BKT mechanism, which consists of the
unbinding of vortex–antivortex pairs at the phase transition,
underscoring the topological nature of the transition. The
unbound vortices are strong phase defects and suppress the
quasi-long-range order. The BKT transition occurs in awide
range of physical systems such as liquid helium [5], super-
conducting films [6], Josephson junction arrays [7], ultra-
cold atoms [8], and polariton condensates [9].
Ultracold atoms have enabled detailed studies of the

BKT transition. These systems have a wide range of
trappable quantum liquids, that have tunable interactions
and consist of bosonic or fermionic particles. This has led
to the observation of coherence and superfluid properties
[8,10–15], universal scaling behavior [16], and thermally
activated vortices [8,17]. The BKT transition in a harmoni-
cally trapped 2D quantum gas was studied via matter-wave
interferometry [8] and via measurement of the momentum
distribution [18,19]. The microscopic description of order

in such an inhomogeneous system typically invokes the
local density approximation (LDA), which relates the
observed phenomenon to the universal description of a
uniform system. The LDA is essential for the understanding
of scale-invariant and superfluid properties of inhomo-
geneous 2D systems [10,16]. Reference [20] suggested that
the LDA can also be used to describe the correlation
properties of an inhomogeneous 2D gas, which was not
applied in previous measurements where only integrated
quantities were measured. This resulted in saturation of the
exponent at low temperatures [8] as well as a critical
exponent 5 times larger than that predicted for ηBKT [18].
To disentangle the spatial inhomogeneity of the system and
the universality of the BKT transition in ultracold atomic
systems, it is crucial to access the local fluctuations of the
system, rather than global or integrated observables.
In this Letter, we report the direct observation of local

phase fluctuations by a selective probing of the relative
phase between a pair of 2D Bose gases. We use matter-
wave homodyning and selectively image a slice of the
interference pattern [21] to access local phase fluctuations.
This critical improvement allows direct measurement of the
phase correlation function and the local vortex density,
which are essential to characterize the BKT transition, as
we demonstrate in this Letter. We identify the critical
temperature of the BKT transition by a change in the
functional form of the correlation function, which results in
a measured value of critical exponent ηc ¼ 0.17ð3Þ for our
trapped system. We examine the temperature dependence
of the thermally created vortices, which proliferates above
the critical temperature and exhibits a scale-invariant
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behavior. We benchmark these experimental measurements
by carrying out Monte Carlo (MC) simulations.
Our experimental apparatus is described in detail in

Refs. [21,22]. A cloud of approximately 7 × 104 87Rb atoms
is confined in a cylindrically symmetric 2D potential, with
weak trap frequencies of ωr=2π ¼ 11 Hz in the horizontal
plane and a double-well potential in the vertical direction z.
The double well has vertical trap frequencies of ωz=2π ¼
1 kHz for each potential minimum and each well confines
N ≈ 3.5 × 104 atoms. For the range of temperatures and
atom numbers in this work, the quasi-2D conditions ℏωz >
kBT and ℏωz > μ are satisfied, where ℏ is the reduced
Planck constant, kB the Boltzmann constant, T is the
temperature of the cloud, and μ is the chemical potential.
The characteristic dimensionless 2D interaction strength is
g̃ ¼ ffiffiffiffiffiffi

8π
p

as=l0 ¼ 0.076, where as is the 3D scattering
length and l0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmωzÞ

p
is the harmonic oscillator

length along z for an atom of mass m. After loading into
the double well, the gas is held for 500 ms to allow
equilibration [8]. The final temperature of the gas is in
the range 31–47 nK, which is controlled by forced evapo-
ration. We set the temperature scale for our system using the
condensation temperature of an ideal 2D Bose gas in a
harmonic trap, T0 ¼

ffiffiffiffiffiffiffi
6N

p ðℏωr=πkBÞ ≈ 75 nK.
The detection scheme is illustrated in Fig. 1(a). To

observe the matter-wave interference, the trap is abruptly
turned off, releasing the pair of 2D gases for a time-of-flight
(TOF) expansion of duration tTOF ¼ 16.2 ms. Once
released, the clouds expand along the z direction [23,24]
and an interference pattern along z appears. We image a thin
slice of the density distribution with thickness Ly ¼ 5 μm,
as indicated in Fig. 1(a). The density profile, such as that
shown in Fig. 1(b), is obtained by integrating along z and
averaging over many images. This profile is a bimodal
distribution having a Thomas-Fermi (TF) profile of the
quasicondensate and a broad Gaussian of the thermal wings
[25], as illustrated in Fig. 1(c). In contrast to the true (3D)
condensate, the quasicondensate in two dimensions dis-
plays fluctuating phase and supports both thermal and
superfluid phases of the BKT transition [25–28]. We
determine the quasicondensate fraction (number of atoms
within the TF profile divided by the total number of atoms)
and show its temperature dependence in Fig. 1(d), along
with the MC results [29], which yields the onset of
quasicondensation at Tqc=T0 ∼ 0.7.
The local fluctuations of the interference fringes contain

the phase information of in situ clouds. At each location x,
we fit the interference pattern with the function [47]

ρxðzÞ ¼ ρ0 exp ð−z2=2σ2Þf1þ c0 cos½kzþ θðxÞ�g; ð1Þ

where ρ0; σ; c0; k; θðxÞ are fit parameters. The extracted
phase θðxÞ encodes a specific realization of the fluctuations
of the in situ local relative phase between the pair of
2D gases. For each experimental run, we calculate the

two-point phase correlation function ei½θðxÞ−θðx0Þ� at loca-
tions x and x0. We then determine the averaged correlation
function

Cexpðx; x0Þ ¼
1

Nr

X

j

ei½θðxÞ−θðx0Þ�; ð2Þ

where the index j runs over Nr individual experimental
realizations with Nr ¼ 220. We analyze the real part of the
correlation function Crðx; x0Þ ¼ Re½Cexpðx; x0Þ�, which is
equal to 1 for perfectly correlated pairs of points and 0
for uncorrelated pairs of points. Figures 2(a)–2(c) show

(a)

(c) (d)

(b)

FIG. 1. Probing local phase fluctuations using matter-wave
interference. (a) Schematic of the experimental procedure. We
begin with quasi-2D Bose gases trapped in a double-well
potential (blue discs, top). The clouds fall and undergo time-
of-flight expansion, such that they spatially overlap and produce
interference fringes with fluctuating phases (blue wavy planes).
The red sheet of thickness Ly denotes the thin laser beam that
repumps a slice of atoms. We image repumped atoms using
resonant light (depicted as a blue beam propagating along the
y direction). (b) An example of a single matter-wave interference
image (top) and averaged density profile obtained by integrating
along z (bottom). The red dash-dotted lines indicate the bounda-
ries of the Thomas-Fermi region of quasicondensate; see text.
Gray solid line is the result of bimodal fit. (c) Density profiles at
different temperatures, where the continuous lines are bimodal
fits; see text. (d) Fraction of atoms in the TF profile of the cloud
from the experiment (filled markers) and the Monte Carlo
simulation (open markers). The error bars of the experimental
results denote standard errors.
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examples of Crðx; x0Þ, which is related to the one-body
correlation function g1ðr; r0Þ via [29]

Crðr; r0Þ ≃ hΨ†ðrÞΨðr0Þi2
hjΨðrÞj2ihjΨðr0Þj2i ¼

g1ðr; r0Þ2
n22D

; ð3Þ

where n2D is the 2D density. To quantify the decay of
correlations, we calculate Cðx̄Þ by averaging Crðx; x0Þ over
points with the same spatial separation x̄ ¼ x − x0 [29].

This averaging was performed over a central region
corresponding to 80% of the TF diameter.
The measurements of Cðx̄Þ for various temperatures

shown in Fig. 2(d) indicate that Cðx̄Þ decays slowly at short
and intermediate distances for T=T0 ¼ 0.41 and 0.47 but
rapidly at increasing distance at higher temperatures of
T=T0 ¼ 0.54 and 0.61. This qualitative change of the
correlation decay with temperature indicates the crossover
to the thermal phase across the BKT transition.Cðx̄Þ falls off
rapidly at large distances for all temperatures because of the
decrease in density towards the boundary of the TF region.
This effect of density variation can be incorporated into the
BKT picture within the LDA by introducing a spatially
varying exponent ηtðx̄Þ ¼ ηmax½nðx̄Þ�=nðx̄Þ [20,29], where
the density contribution nðx̄Þ ¼ h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðxÞnðxþ x̄Þp i and η
correspond to the averaged value within the TF region.
To characterize the transition point, we fit the correlation

function Cðx̄Þ with two models: the algebraic model
fSFðx̄Þ ¼ ax̄−2ηtðx̄Þ, where a and η are the fit parameters,
and the exponential model fthðx̄Þ ¼ be−2x̄=r0 , where b and
r0 are the fit parameters. We show the χ2 values of both fit
models in Fig. 3(a). We observe a transition to exponential
scaling at Tc=T0 ¼ 0.53ð1Þ; below Tc, fSF is favored,
while above Tc, fth better describes the correlation decay
having more than a factor of 2 higher p values [29].
The value of Tc increases when the analysis is limited to

narrower regions with higher mean density [29] and we
expect Tc;center=T0 ¼ 0.68ð4Þ in the limit of a small
analysis region using the MC results. This is close to
the theoretical prediction of the critical temperature for
harmonically trapped quasi-2D Bose gases within LDA,

(a)

(b)

(c)

(d)

FIG. 2. Correlation properties of 2D Bose gases. (a)–(c) Two-
point phase correlation function Crðx; x0Þ, obtained from 220
images, at temperatures of T=T0 ¼ 0.41, 0.51, and 0.59, re-
spectively. (d) Correlation function Cðx̄Þ at T=T0 ¼ 0.41, 0.47,
0.54, and 0.61, from top to bottom. The shaded region corre-
sponds to the standard errors and the range of x̄ depends on the
temperature because of the change of TF diameter; see text.

(a) (b) (c)

FIG. 3. Characterizing the BKT transition in a 2D Bose gas. (a) χ2 values of the algebraic fit fSF (blue circles) and exponential fit
fth (red squares) for various values of the temperature T=T0. The dotted lines are the heuristic fits to the temperature dependence of
χ2 to identify the critical point, with arctangent (blue) and a piecewise linear function (red) [29]. The obtained critical temperature
Tc=T0 ¼ 0.53ð1Þ is indicated by the vertical dashed line. (b) Measurements of the algebraic exponent η (filled circles) are compared
with the results of Monte Carlo simulations (open circles). η is determined by fitting the correlation function with an algebraic model
fSF. The gray dotted line is the quadratic fit to the experimental data used to obtain ηc. The inset shows fitted data in the superfluid
regime, at T=T0 ¼ 0.41 and 0.51. (c) Measurements of the correlation length r0 (filled squares) and the simulation results (open
squares), where r0 is determined by fitting the correlation function with an exponential model fth. The values of the temperature-
dependent Thomas-Fermi diameter are shown for the experiment (continuous line) and the simulation (dotted line). The inset shows
fitted data in the thermal regime, at T=T0 ¼ 0.54 and 0.61. The error bars in η and r0 denote standard fit errors, while the error bars
in temperature are statistical errors.
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Tc;q2D=T0 ¼ 0.74 [48], which is defined as the temperature
at which the superfluid appears at the center of the cloud.
The result of Tc;center also agrees with the quasicondensa-
tion temperature Tqc=T0 ∼ 0.7. Similarly, at Tc, we observe
the phase-space density (PSD) D ¼ nλ2 at the trap center
Dc ¼ 15ð2Þ, where λ ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmkBT

p
is the thermal de

Broglie wavelength. In the limit of small regions of interest,
we expect Dc;center ¼ 9ð2Þ, which is close to the theoretical
prediction Dc ¼ lnð380=g̃Þ ¼ 8.5 [49].
In Fig. 3(b), we show the experimentally determined η

and the simulation results for various temperatures across
the transition, which are in good agreement. According to
BKT theory, ηðTÞ scales approximately linearly in the
superfluid phase [2,50]. Indeed, our measurement of ηðTÞ
follows linear dependence for T ≲ Tc, where the system is
in the superfluid regime. However, above Tc, ηðTÞ deviates
from the linear behavior and increases more rapidly.
At Tc, the algebraic exponent is ηc ≡ ηðTcÞ ¼ 0.17ð3Þ,

which is below the universal value in the thermodynamic
limit ηBKT ¼ 0.25. For a finite-size system, the transition
manifests itself as a smooth crossover, for which the critical
exponent displays a smaller value which scales with
the system size as ηcðLÞ ¼ ηBKT=ð1þ 0.5=½lnðLÞ þ C�Þ,
where L is the linear dimension of the system and C
is a nonuniversal constant of order unity [51]. For our
trapped system, this expression gives ηcðLÞ ∼ 0.21 using
L ∼ R=ξ ∼ 30, where R ∼ 30 μm is the TF diameter and
ξ ∼ 1 μm is the healing length. The value of ηc is unaffected
by the change in the region of interest [29].
In Fig. 3(c), we show the correlation length r0ðTÞ and

the temperature-dependent TF diameter. Since r0 cannot
exceed the system size, the value of r0 is bounded by the
TF diameter. The experimentally determined values of r0
reach this upper bound for T ≲ Tc in the superfluid phase.
When the system crosses Tc, r0 becomes smaller than the
TF diameter. We note that up to 15% systematic error
in r0 is expected from the limitations of our imaging system
in the thermal regime [29]. In Fig. 3(c) we present
the simulation results for r0ðTÞ and the TF diameter,
which show consistent behavior in agreement with the
measurements.
The BKT transition is driven by thermal vortex unbind-

ing, which suppresses the quasi-long-range order above
the critical temperature. This underlying mechanism is
detected via matter-wave interferometry, where vortices are
observed as sharp dislocations in the interference patterns
[8]. This enables us to determine the local vortex density
using our selective imaging method [21,29]. In Fig. 4(a),
we show examples of matter-wave interference patterns
obtained from two independent measurements at T=T0 ¼
0.52 and 0.55. The sharp phase dislocations are indicated
by red vertical lines, which we count as vortices. We obtain
local vortex density nvðxÞ by averaging the vortex number
over many images at the location x [29]. In Fig. 4(b), we
show the probability to detect a vortex Pv, averaged over

the TF region; there is a sharp increase in Pv at a certain
temperature. We determine this vortex proliferation temper-
ature, Tv=T0 ¼ 0.52ð1Þ, from the discontinuity of the slope
in a piecewise linear fit.
Weakly interacting 2D Bose gases possess a symmetry

which gives rise to the scale-invariant description across the
BKT critical point [16,49,52]. In an inhomogeneous
system, local observables can be mapped to a scale-
invariant description within LDA, using an appropriate
rescaling of the quantities [16]. In Fig. 4(c) we plot the
rescaled local vortex density env ¼ nvðxÞξðxÞ2 against the
local PSD Dloc ¼ nðxÞλ2, where nðxÞ is the local 2D
density at the location x and ξðxÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nqcðxÞg̃

p
is the

local healing length calculated using the quasicondensate
density nqc [29]. The healing length characterizes the
length scale of a vortex core with its area ∼ξ2, such
that env quantifies the dimensionless vortex core density.

(a)

(c)

(b)

FIG. 4. Vortex proliferation in 2D Bose gases. (a) Typical
interference patterns with phase dislocations (indicated by red
vertical lines), which we count as vortices. (b) Probability to
detect a vortex Pv as a function of T=T0. The vertical dotted line
is the vortex proliferation temperature Tv, which is determined
using a piecewise linear fit (continuous lines). The error bars for
Pv are the statistical uncertainty, given by the square root of the
numbers of detected vortices. (c) The rescaled local vortex
density envðxÞ ¼ nvðxÞξðxÞ2 plotted against the local PSD
Dloc ¼ nðxÞλðTÞ2, where nðxÞ is the local 2D density at location
x. The measurements (filled circles) and the simulations (open
circles) cover a range of temperatures between T=T0 ¼ 0.41 and
0.61 and experimental datasets with eight different temperatures
contribute to the plot. The solid line is the exponential fit to the
experimental data; see text. The vertical dash-dotted line is the
predicted critical PSD [49]. The inset shows the same results on a
log-linear scale to highlight the exponential scaling across the
BKT transition. Error bars are statistical.
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The measurements for different temperatures collapse on
to a common exponential (continuous line), as clearly
shown in the inset. This is a direct demonstration of scale
invariance of vortex density near the BKT transition. The
vortex density grows exponentially at low Dloc, indicating
crossover to the thermal phase. We fit the measured local
vortex density with the function Ae−γDloc , where A and γ are
the fit parameters. This choice of exponential scaling is
motivated by Ref. [53]. From the fit, we obtain γExp ¼
0.56ð5Þ and AExp ¼ 7ð2Þ. In Fig. 4(c) we also present the
simulation result of the vortex density [29], which shows
scale-invariant behavior that agrees with the measurements
with γMC ¼ 0.52ð5Þ.
In conclusion, we have measured the local phase

fluctuations of 2D Bose gases via matter-wave interferom-
etry and supported the measurements by Monte Carlo
simulations. Our measurements of the phase correlation
function and the vortex density provide a comprehensive
understanding of the BKT transition in 2D Bose gases. We
identified the critical point by the sudden change in the
functional form of correlation function. We have mapped
out the temperature dependence of the algebraic exponent
and determined ηc ¼ 0.17ð3Þ, as expected for a finite-size
system. The local vortex density shows a scale-invariant
behavior across the transition.
The experimental technique presented in this Letter

can be used to probe nonequilibrium dynamics across
the BKT transition [54–56]. Furthermore, the pair of 2D
gases in two trap minima can be coupled via quantum
tunneling, to investigate the coupled bilayer XY model [57]
and Josephson dynamics in low-dimensional quantum
gases [58,59].
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