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We present a simple model describing the assembly and disassembly of heteropolymers consisting of
two types of monomers A and B. We prove that no matter how we manipulate the concentrations of A and
B, it takes longer than the exponential function of d to synthesize a fixed amount of the desired
heteropolymer, where d is the number of A-B connections. We also prove the decomposition time is linear
for chain length n. When d is proportional to n, synthesis and destruction have an exponential asymmetry.
Our findings may facilitate research on the more general asymmetry of operational hardness.
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Introduction.—It is hard to construct a complex system,
while it is easy to destroy it [1]. A typical example of such a
system is a living organism [2]. Even though various kinds
of damage may stop biological activity, it is almost
impossible to bring an organism back to life once it has
died [3]. One possible cause of the irreversibility of
biological death is the asymmetry in the difficulty of
assembling and destroying structures. To build a structure
with some desirable function or property, each component
must be carefully arranged in a specific order but no such
care is required to destroy it. In this Letter, we attempt to
characterize such asymmetry.
A similar asymmetry is formulated in computational

complexity theory, where problems are classified by the
amount of computational time and memory required to
solve a given problem using a model computer, such as a
Turing machine [4]. Concretely, the concept of NP and P
characterizes the asymmetry of computation. If a problem
is in NP and not P, we can efficiently (i.e., in polynomial
time of the length of the input bit sequence) determine
whether a given candidate is a suitable solution to the
problem or not, but it takes an exponentially long time in
the worst case to find the solution itself [5]. To the present,
there have been many attempts to link the concepts of the
theory of computation to the description of natural phe-
nomena [6–18] and this would be an interesting research
direction.
Motivated by these studies, in this Letter, we formulate

the operational asymmetry between synthesis and destruc-
tion of one-dimensional heteropolymers. Because we
restrict our analysis to a class of simple systems with
an experimentally accessible setting, there is no direct
correspondence to computational complexity theory.
Nevertheless, we can show that there exists a fundamental
limit to the synthesis rate that cannot be exceeded by any
external operations in that setting. The results obtained for

the specific model may provide useful insights into more
general studies on the cost of polymer synthesis or protein
synthesis under nonequilibrium environments.
We introduce an idealized description of the synthesis

and decomposition of a one-dimensional molecular chain
comprising two types of molecular subunits. The concen-
trations of molecular subunits are controlled by an external
operator. The difficulty of synthesis (destruction) is quan-
tified by the time T it takes to synthesize (destruct) a fixed
amount of molecular chains with the desired sequence. In
the synthesis process, we prove that T is greater than an
exponential function of d no matter what external oper-
ations are performed, where d is the number of connections
between different types of molecular subunits. The diffi-
culty of synthesizing heteropolymers in this system is
characterized by this quantity d. We also prove that the
time required to decompose a fixed amount of molecular
chains is smaller than a linear function of the chain length
n. For molecules where d is proportional to n, there is an
exponential asymmetry between the hardness of synthesis
and destruction.
Synthesis process.—We consider the synthesis of a one-

dimensional molecular chain by the sequential binding of
molecules A and B to reaction nucleus X as displayed in
Fig. 1. An external operator aims to synthesize the desired
molecular chain as efficiently as possible by controlling the
concentrations of A and B over time.
We assume the only possible reaction is the binding of

molecule Z ∈ fA; Bg to a molecular chain M to form MZ,

M þ Z⟶
kZ MZ; ð1Þ

where the rate constant kZ depends only on Z [19]. For
simplicity, we ignore the reverse reaction in which a bound
molecule is detached. The reaction tank is connected
to particle reservoirs that separately supply X, A, and B
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[see Fig. 2(a) for an illustration]. The concentration of each
chemical species and the temperature in the reaction
chamber are spatially homogeneous, and the numbers of
each molecule are large enough that the behavior of the

system is well described by the following deterministic rate
equations:

d
dt

cMZðtÞ ¼ −kAcAðtÞcMZðtÞ − kBcBðtÞcMZðtÞ
þ kZcZðtÞcMðtÞ; ð2Þ

d
dt

cXðtÞ ¼ −kAcAðtÞcXðtÞ − kBcBðtÞcXðtÞ þ JX; ð3Þ

where cMðtÞ is the concentration of molecule M at time t.
The first and second terms on the right-hand side of
Eq. (2) correspond to the reactions MZ þ A → MZA
and MZ þ B → MZB, respectively; the third term repre-
sents the contribution from the reaction M þ Z → MZ.
The concentration dynamics in the reaction chamber can

be divided into three types. First, the concentrations of
molecules other than X, A, B evolve in time according to
Eq. (2). Second, the dynamics of cXðtÞ are described by
Eq. (3), where the last term represents the constant supply
of reaction nucleus X from the particle reservoir to the
reaction tank. Third, we assume that the concentrations of
molecules A and B are controllable in time by an external
operator.
At time t ¼ 0, the reaction chamber is empty. The total

amount of molecule MZ synthesized by reaction (1) from
t ¼ 0 to t ¼ T is

ΣMZ½0; T�≡
Z

T

0

dt kZcZðtÞcMðtÞ: ð4Þ

Let d be the number of connections between different types
of molecular subunits. For example, d ¼ 2 for XABBA and
d ¼ 5 for XAABABBAB.
The first main result of this Letter is that the synthesis of

a constant amount of the molecular chain takes an expo-
nentially long time to the molecular length n unless
d ¼ Oðlog nÞ, no matter how the concentrations of material
molecules are manipulated. Specifically, we can prove that
the time T required to synthesize a certain amount ΣM½0; T�
of molecular chain M satisfies

T >
ΣM½0; T�

JX
× 2d=3 ð5Þ

for any synthesis protocol ½cAðtÞ; cBðtÞ�0≤t≤T .
Destruction process.—Here, we consider processes that

fragment the molecular chain into monomers X, A, and B
by sequential detachment of Z ∈ fA;Bg as displayed in
Fig. 1. The possible reactions are desorption of material
molecule Z from molecular chain MZ,

MZ⟶
k0Z M þ Z: ð6Þ

Similar to synthesis process, we assume that the rate
constant k0Z depends only on Z and that the reverse reaction

FIG. 2. Schematic illustration of the setup. (a) Setup for
synthesis process. The reaction tank is connected to particle
reservoirs that supply reaction nucleus X and material molecules
A and B. Molecule X is supplied at a constant rate JX. The
operator’s task is to synthesize the desired molecule (XABA in
this example) as efficiently as possible by controlling the
concentrations cAðtÞ and cBðtÞ. (b) Setup for destruction
process. The concentration of the molecular chain to be
decomposed (XABA in this example) is kept constant and X
is recovered to the particle bath at rate τ−1X cXðtÞ. The total
amount of X recovered is Σ0

X½0; T�.

FIG. 1. Schematic illustration of the synthesis and destruction
of a one-dimensional molecular chain XABA. The green triangle,
blue circle, and red square represent the reaction nucleus X,
molecule A, and molecule B, respectively. We assume that the
only possible reactions are the sequential binding or detachment
of the molecules.

PHYSICAL REVIEW LETTERS 128, 247801 (2022)

247801-2



(recombination) does not occur. The rate equations
are then

d
dt

cMZðtÞ ¼ −k0ZcMZðtÞ þ k0AcMZAðtÞ þ k0BcMZBðtÞ; ð7Þ

d
dt

cXðtÞ ¼ −τ−1X cXðtÞ þ k0AcXAðtÞ þ k0BcXBðtÞ; ð8Þ

where τ−1X is the recovery rate constant of X from the
reaction vessel to the particle bath [see Fig. 2(b) for an
illustration]. The concentration of the molecular chain to be
decomposed cM is assumed to be constant.
At t ¼ 0, the reaction chamber is empty. The total

amount of molecular chains completely disassembled from
t ¼ 0 to t ¼ T is equal to the total amount of reactant nuclei
X recovered in the particle reservoir:

Σ0
X½0; T�≡

Z
T

0

dt τ−1X cXðtÞ: ð9Þ

We can then show that a linear time with respect to the
molecular length n is sufficient to decompose a constant
amount Σ0

X½0; T� of the molecular chain. That is,

T < 2τ̄ × nþ 2τXΣ0
X½0; T�
cM

; ð10Þ

where τ̄ is the average molecular detachment time.
Outline of the derivation.—First, we explain the outline

of the proof that the synthesis reaction takes an exponen-
tially long time to the length of the molecular chain. We
focus on the processes where different types of mole-
cules are connected. Given a specific synthesis protocol
½cAðtÞ; cBðtÞ�0≤t≤T , we can express cMZABðtÞ as a function
of cMðtÞ for any Z ∈ fA;Bg and show that ΣMZABZ� ½0; T� <
ΣMZ½0; T� × 1=2 for any Z; Z� ∈ fA;Bg. Because this
relation applies to each connection [20] between A and
B in the molecular chain, the upper limit to the amount
synthesized becomes exponentially smaller for larger
values of d and the corresponding time required to
synthesize a fixed amount of the molecular chain becomes
exponentially longer [21].
Next, we outline the proof that the decomposition time is

shorter than a linear function of the molecular chain length.
Although it is possible to directly solve Eqs. (7) and (8), we
instead consider the probability that the molecular chainM
is completely degraded within time t. Using Markov’s
inequality, we find that cXðtÞ has a lower bound, which
leads to Eq. (10) [21].
Mechanism behind the hard synthesis and easy

destruction.—The asymmetry exhibited by our model
can be understood from its reaction network structure,
which is a Cayley graph of depth n (see Fig. 3). Because of
by-product formation, the proportion of molecules that can
reach the desired vertex (XABA in this case) becomes

exponentially smaller than the initial amount. As a result,
the synthesis rate is markedly reduced. In contrast, during
chain decomposition, no by-products are produced and the
reaction proceeds along a single path. Thus, decomposition
only requires a time that is linear to the chain length.
Although we have focused on a specific example, the

scheme shown in Fig. 3—an exponentially branched maze
with only one exit—may capture a universal aspect that can
be applied to more complex and general asymmetries of
operational difficulty.
Concluding remarks.—We have described a simple

model of the synthesis and decomposition of molecular
chains composed of two types of molecular subunits. As
shown in Eq. (5), the difficulty of synthesizing heteropol-
ymers in this system is characterized by the number of
connections d between different types of monomers.
Equations (5) and (10) highlight the distinct asymmetry
between assembly and destruction. When d is proportional
to n, the time required to assemble a fixed amount of
molecular chains is an exponential function of the chain
length regardless of how the concentrations of the mono-
mers are manipulated, while the corresponding function for
chain destruction is linear. The result in this Letter is
located at the starting point for the study of a general

(a)

(b)

FIG. 3. Reaction network in our model. (a) Schematic illus-
tration of the chain synthesis. The color intensity represents the
number of molecules. The number of molecules decreases
exponentially with the chain length because of the inevitable
formation of byproducts. (b) Schematic illustration of chain
decomposition. In this case, there is no by-product, and the
decomposition proceeds along a single path (red solid line).
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question about the hardness of operations. We thus expect
that the exact form of the bound given in this Letter would
be useful for seeking a general principle.
In closing, we present five future challenges. First, this

study ignored the reverse reaction for simplicity, but we
expect from the following naive discussion that explicitly
considering the reverse reaction would not affect the
results. In the present model, molecular chain MAA is
inevitably generated as a byproduct ofMAB creation and is
the cause of the slow synthesis. If we included the reverse
reaction (detachment of A), we would reduce the amount of
byproducts but also reduce the amount of the desired
product,MAB. Therefore, we would not accelerate the rate
of molecular synthesis. The analysis of the model with a
reverse reaction is left as a future task.
A second problem is related to stochastic thermodynam-

ics, where an upper bound of the current in nonequilibrium
steady-state or a lower bound of the operation time to
convert a probability distribution to another one is inten-
sively studied as thermodynamic uncertain relation [22,23]
and thermodynamic speed limit [24,25]. Although the
settings are different in these relations and the results
presented in this Letter, they share the same motivation of
searching for a limit that cannot be exceeded regardless of
the operational protocol. Thus, it is natural for future
research to explore the relationship among them by
extending the present results to stochastic systems.
A third problem is related to entropy. One may expect

that our result is obtained from a fact that the thermo-
dynamic entropy of a molecular chain is lower than that of
disconnected monomer units. While it is impossible to
make a lower entropy state from a higher one in thermally
isolated systems, the system we study operates out of
equilibrium. Thus, the thermodynamic entropy is not
directly related to the asymmetry of operational hardness.
Rather, our results suggest that it is not the entropy of the
molecular chain but its blockiness that characterizes the
efficiency of heteropolymer synthesis. When d is small,
i.e., the heteropolymer contains large AðBÞ clumps, the
desired molecular chain can be synthesized relatively
efficiently by controlling the concentrations of the mono-
mers. Conversely, when d is large, i.e., the heteropolymer
does not contain large clumps of AðBÞ, efficient synthesis
cannot be achieved no matter how the concentrations of the
monomers are varied over time. Although our results are
limited to one-dimensional heteropolymers, this observa-
tion may be useful to explore the fundamental limits on the
synthesis of more general polymers or proteins under
nonequilibrium environments.
A fourth problem is related to feedback control.

Information thermodynamics [26–28], which extends
thermodynamics to include the effects of measurement
and feedback control by using information-theoretic quan-
tities, was formulated in the last decade. The system
discussed in this Letter is described by deterministic rate

equations and therefore does not include the concept
of feedback. However, in small fluctuating systems,
error correction by feedback mechanisms is expected to
be important to generate complex objects [29,30].
Extending our results to stochastic systems where feedback
effects become significant is an important research direc-
tion to discuss structure formation at small scales.
Finally, we remark that the synthesis of one-dimensional

molecular chains has been experimentally studied [31–35].
Since the base of the exponential function in Eq. (5), 21=3, is
a model-specific parameter, its experimental determination
may yield information about the underlying chemical
reactions. Formulating a general relationship between
chemical reaction networks and operational hardness rep-
resents the most significant future challenge.
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