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The valley degree of freedom presents challenges and opportunities for silicon spin qubits. An important
consideration for singlet-triplet states is the presence of two distinct triplets, composed of valley vs orbital
excitations. Here, we show that both of these triplets are present in the typical operating regime, but that
only the valley-excited triplet offers intrinsic protection against charge noise. We further show that this
protection arises naturally in dots with stronger confinement. These results reveal an inherent advantage for
silicon-based multielectron qubits.
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When quantum dots contain more than one electron, new
possibilities emerge for defining and controlling qubits.
Theoretical studies have shown that GaAs dots withmultiple
electrons may be inherently protected from charge noise
[1–3], and recent experiments confirm some of these
predictions [4–6]. Recent progress in Si-based multielectron
qubits [7–12] brings renewed attention to such noise-reduc-
tion schemes. However, the theoretical description of GaAs
dots is not applicable to Si, due to the presence of both orbital
and valley degrees of freedom for the electrons. While the
orbital energies are determined by electrostatic confinement,
similar to GaAs, the conduction-band valley splitting is
determined by details of the quantum-well interface [13]. It is
technically challenging to describe such behavior because of
the strong electron-electron (e-e) interactions that must be
treated nonperturbatively, and because aminimalmodel of Si
must include details of the Si band structure, as well as
atomic-scale disorder at the quantum well interface, which
gives rise to valley-orbit coupling (VOC) [14].
Here, we develop a complete theoretical toolbox for

describing two-electron dots in Si. We first apply these
tools to study low-energy spin singlet and triplet states.
Solving the two-electron wave functions as a function of
orbital confinement energy Eorb ∼ ℏω reveals two funda-
mentally different triplet excitations, based on their valley
or orbital character, as illustrated in Figs. 1(a)–1(c). These
excitations also have different coherence properties. For
small ℏω, the low-energy states that define the qubit are the
singlet (S) and orbital triplet (Torb). Since these states have
dissimilar charge distributions, they couple differently to
electrical fluctuations [e.g., a nearby charge trap (CT), as
shown in Fig. 1(d)], resulting in dephasing. For stronger
confinement (larger ℏω), the low-energy states are S and
the valley triplet (Tval). In this case, the charge distributions
are very similar, and they respond similarly to electrical
fluctuations [Fig. 1(e)], yielding qubits that are resilient to
dephasing. These results obtained below are applicable to

any two-electron dot system, and are especially relevant for
quantum dot hybrid qubits (QDHQs) [7,8], in which the
qubit energy is largely determined by the ST splitting of
two electrons in a single dot. Double occupation of a single
dot also defines the “parking” regime of a singlet-triplet
qubit, which may be used to suppress the effects of
decoherence or crosstalk [15].
Theoretical methods.—We compute two-electron wave

functions in two steps. First, we use a tight-binding (TB)
approach to obtain single-electron wave functions [16,17].
Thismethod accounts for the essential features of the Si band
structure and allows an atomistic description of disorder at
the quantum well interface. Second, we incorporate these
single-electron wave functions into a full configuration
interaction (FCI) [18] scheme for computing two-electron
wave functions, nonperturbatively, while accounting for
strongly interacting electrons. The full method is summa-
rized in Fig. 2; additional details are given in Ref. [19].
In step one, the single-electron Hamiltonian for the 3D

heterostructure is assumed to be separable in terms of the
ðx; zÞ vs y variables, where x̂, ŷ, and ẑ are the crystallo-
graphic axes. We consider atomistic disorder only in the x-z
plane. This simplification allows us to treat the ðx; zÞ
variables using TB methods, while solving the separable
y wave functions using continuum effective-mass theory,
which allows us to achieve full convergence on a more
practical timescale. The single-electron Hamiltonian can
then be written as

H1e ¼ HK þHE þHQW: ð1Þ

Here, the kinetic energy is given by

HK ¼−ℏ2

2mt

∂2

∂y2þ
X

ix;iz

ðt1jix;izþ1ihix;izj

þ t2jix;izþ2ihix;izjþ t3jixþ1;izihix;izjþH:c:Þ; ð2Þ
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where the integer indices ix and iz refer to TB sites along
the x̂ and ẑ axes, respectively. We have suppressed the spin
index here, because our Hamiltonian is independent of
spin, and the effects of Pauli exclusion become important
only at the FCI stage of the calculation. The hopping
parameters t1 ¼ 0.68 eV and t2 ¼ 0.61 eV are chosen to
reproduce the key features of the twofold degenerate
structure at the bottom of the Si conduction band: (1) valleys
centered at k ¼ �k0ẑ in reciprocal space, where k0 ¼
�0.82ð2π=aÞ, a ¼ 5.43 Å is the cubic lattice constant,
and Δz ¼ a=4 is the grid spacing, and (2) longitudinal
effective mass,ml ¼ 0.916m0. The hopping parameter t3 ¼
−0.026 eV gives the correct transversal effective mass,
mt ¼ 0.191m0, for the grid spacing Δx ¼ 2.79 nm [20].
We note that Δx can be much larger than Δz, because
there are no fast valley oscillations along x̂. The vertical
(quantum well) confinement potential is given by

HQW ¼
X

ix;iz

½E0 þ VQWΘix;iz

− eðixFe
xΔxþ izFe

zΔzÞ�jix; izihix; izj; ð3Þ

where Θix;iz is a step function that takes the value 1 on a
SiGe site and 0 on a Si site, VQW ¼ 150 meV is the band
offset between Si and SiGe, e ¼ jej is the elementary
charge, and Fe ¼ ðFe

x; 0; Fe
zÞ is the electric field

perpendicular to the interface due to the gate electrodes.
All calculations assume 10 nm quantum wells. Interface
disorder is implemented via the choice of Θix;iz . In this
Letter, we consider an interface tilted slightly away from ẑ,
with uniformly distributed single-atom steps of height a=4
and widthW, as depicted in Fig. 2(a). The field Fe is taken
to be perpendicular to the tilted interface. The lateral
confinement potential is of electrostatic origin, and is taken
to be parabolic [21], with the form

HE ¼ 1

2
mtω

2
x

X

ix;iz

ðixΔxÞ2jix; izihix; izj þ
1

2
mtω

2
yy2: ð4Þ

We solve H1eϕi ¼ εiϕi to obtain the single-electron basis
states ϕi used in the FCI calculation. A typical energy level
structure is shown in Fig. 2(b).
In step two, we solve the two-electron Hamiltonian,

which includes the Coulomb interaction term

H2e ¼ H1eðr1Þ þH1eðr2Þ þ
e2

4πϵ0ϵr

1

jr1 − r2j
; ð5Þ

FIG. 2. Overview of theoretical methods. (a) Schematic of the
2D TB method used to compute single-electron wave functions,
while accounting for atomic-scale disorder at the quantum well
interface. Si sites are shown as white and SiGe sites are shown as
gray. Interface steps have widthW, the harmonic dot confinement
potential (red) has diameter D, and we take the dot to be centered
halfway between two steps, d ¼ W=2. Hopping parameters t1, t2,
and t3 and on-site parameters are discussed in the main text.
(b) Typical results for single-electron energies εi. (c) FCI step:
Slater determinants ψα are computed for spin orbitals χi, obtained
from TB valley orbitals ϕi, combined with spin coordinates. The
two-electron Hamiltonian H2e is diagonalized in this Slater basis,
with enough spin-orbit basis states (84) to ensure convergence.
(d) Typical results for two-electron energies Eq.

FIG. 1. Effects of e-e interactions and electrical noise on singlet-
triplet states in a two-electron Si=SiGe quantum dot. (a) Non-
interacting electrons. Single-electron energy levels (black lines)
include valley and orbital excited states, with Eval < Eorb. Two-
electron states (S, Tval, and Torb) are formed from combinations of
spin, valley, and orbital states (red arrows). Charge distributions are
shown schematically, with darker colors indicating higher den-
sities. The two Torb states have distinct px or py character.
(b) Including e-e interactions. In the high-Eorb regime, we find
ESTval

< ESTorb
. The resulting low-energy states (S and Tval) have

very similar charge distributions. (c) Stronger e-e interactions
(low-Eorb regime). Here, ESTorb

< ESTval
, and the low-energy states

(S and Torb) have very different charge distributions. (d),(e) The
responses of S, Torb, and Tval to a charge trap (CT) depend on their
charge distributions. (d) Dissimilar distributions give large ESTorb

fluctuations. (e) Similar distributions give smallESTval
fluctuations.
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where ϵ0 is the permittivity of free space, and ϵr ¼ 11.4 is
the dielectric constant of low-temperature Si [24]. The
Coulomb matrix elements are computed using a combina-
tion of numerical and analytical methods, taking advantage
of the analytical wave function solutions along ŷ. We then
solve for the eigenvalues and eigenstates ofH2eΨq ¼ EqΨq

using FCI methods: H2e is diagonalized in a basis of Slater
determinants generated from spin orbitals χ ¼ ϕ ⊗↑ or
χ ¼ ϕ ⊗ ↓, as shown in Figs. 2(c) and 2(d). A finite set of
determinants is used and the convergence of the FCI
method is checked, as in Ref. [19]. Finally, we note that
spin-orbit interactions and external magnetic fields have
been ignored in this Letter, since the former are expected to
be much weaker than valley-orbit interactions in Si=SiGe
heterostructures, while the latter are not required for
operating QDHQs [19].
Results.—To better understand the nontrivial behavior

arising from e-e interactions and VOC, it is instructive to
consider these effects one at a time, as summarized in
Fig. 1. In the absence of interactions, the ground-state
singlet (S) is formed from two electrons, each in the lowest
orbital level. There are two different types of single-
electron excitations above the ground state: valleys and
orbitals, with corresponding single-electron excitation
energies, Eval and Eorb. Two-electron excitations take on
the character of these single-electron excitations, yielding
distinct valley (Tval) and orbital (Torb) triplets, with exci-
tation energies ESTval

¼ Eval and ESTorb
¼ Eorb. Here, we

assume Eval < Eorb, as consistent with many qubit experi-
ments [25–31]. The charge distribution of Tval is identical
to S; however Torb is quite different, due to its p-orbital
contribution. Now, introducing e-e interactions [Fig. 1(b)],
we find that many additional Slater determinants contribute
to the two-electron wave functions. To a very good
approximation, the triplets retain their valley or orbital
character; however the e-e interactions strongly suppress
ESTorb

below Eorb, while having almost no effect on ESTval
≈

Eval [19]. The charge distributions for S and Tval take the
form of Wigner-molecule doughnuts, with dimples at their
centers [32–36]. For stronger interactions [i.e., smaller ℏω,
Fig. 1(c)], there is a crossover from Tval to Torb-dominated
excitations. In this regime, the qubit states (S and Torb) have
very different charge distributions.
We finally consider a realistic dot model including e-e

interactions and VOC. Typical results for excitation ener-
gies are shown in Fig. 3(a). To begin, we consider wide
steps, W ¼ 101 nm, to clearly demonstrate the types of
behavior observed as a function of ℏω. We also position the
dot as far as possible from a step, with d ¼ W=2, as
depicted in Fig. 2(a). For small ℏω (weak confinement),
Torb is the dominant excitation, with an excitation
energy, ESTorb

≲ kBT, that is typically too small to enable
high fidelity qubit initialization or readout. For larger
ℏω > 600 μeV, there is a crossover to Tval-dominated
behavior. If the valley splitting is also ≳100 μeV, the

energy ESTval
will certainly be large enough for practical

applications. (For quantum-dot QDHQs, slightly smaller
EST are preferred [7,8].) For this calculation, we used
jFej ¼ 0.6 MV=m. This particular value yields a valley
splitting of Eval ∼ 105 μeV, as consistent with recent
experiments [28]. We note that both electric field and
disorder profiles play an important role in determining EST
in actual devices, although neither can be well character-
ized. Rather than focus on such details here, we simply
report our results for a fixed field value. However, we have
confirmed that variations in the electric field do not
qualitatively affect our main results. For ℏω values below
the triplet crossover, ESTval

drops quickly, as the dot (with

diameter D ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mtω

p
) begins to strongly overlap with

different interface steps, suppressing the valley splitting
[13], and causing VOC [14]. We can also explore other
regimes by computing the excitation energies as a func-
tion of ℏω while holding W ¼ 2D fixed, as shown in
Fig. 3(b), to ensure that the dot does not interact
excessively with the steps. (This requires simultaneously
changing W as ℏω is varied.) Here, we again observe a
crossover from Torb to Tval-dominated behavior. However,
because the wave function remains far from the nearest
step, ESTval

is not suppressed for low ℏω. In contrast, the
insets of Fig. 3(b) show that smaller W=D ratios cause
significant reductions in ST splittings, making it more
difficult to achieve acceptable values for qubit applications.
In Ref. [37] we further discuss interface profiles that give
small ST splittings.
The crossover from Torb to Tval-dominated behavior has

a strong effect on qubit coherence, because the Torb and Tval
charge distributions couple differently to charge fluctua-
tions. Previous work has considered the exploitation of the
valley degree of freedom for protecting quantum informa-
tion from environmental noise [38,39]; here, we specifi-
cally focus on the effects of charge noise on the ST energy
splitting of a two-electron quantum dot, assuming realistic
disorder and confinement models. For the QDHQ, for
example, EST determines the qubit energy, and fluctua-
tions of EST lead directly to dephasing [40]. The insets of
Fig. 3(a) show typical in-plane electron densities for ℏω ¼
550 and 650 μeV, which bracket the crossover between
low-energy triplet states. As noted above, the charge
distribution of S is very similar to that of Tval but not
Torb. These distinctions are still valid when the VOC, which
mixes the valley and orbital character of thewave functions,
is weak but nonzero. Consequently, charge noise affects S
and Tval similarly, yielding weak fluctuations of ESTval

, but
much larger fluctuations of ESTorb

. The high-ℏω regime is
therefore expected to yield qubits with much better coher-
ence properties.
To quantify these claims, we consider the effect of a

charge trap, as depicted in Figs. 1(d) and 1(e). First-order
perturbation theory is used to estimate the shifts in EST due
to the electrostatic potential VCT of the trap [2,3,41],
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δESTvalðorbÞ ≈ ejhTvalðorbÞjVCTjTvalðorbÞi − hSjVCTjSij: ð6Þ

We note that interfacial disorder breaks the circular sym-
metry, allowing us to use nondegenerate perturbation theory
for the circular confinement potentials used in this work. We
evaluate Eq. (6) for the geometry shown in the lower inset of
Fig. 3(c), that is typical for QDHQs, assuming a 10 nm Si
quantumwell, a SiGe barrier ofwidth 40 nm, a 1 nmSi cap, a
5 nm layer of Al2O3, and a metal top gate. For simplicity, we
consider the gate to be an infinite plane giving rise to a
uniform electric field Fe, but not the dot confinement
potential. The dot confinement is simply given by Eq. (4),
and we assume the image potentials for the dot electrons are
subsumed into this potential. We take the charge trap to be
located ∼50 nm above the dot, inside the oxide layer, as
suggested by recent experiments [42]. Because of its prox-
imity to the top gate, the trap is strongly screened. Following
Ref. [43], and using the dielectric constants of the different
layers, we obtain the leading terms in the potential,
VCT ≈ ð1.13e=4πϵ0ϵrÞðjR − rj−1 − jRim − rj−1Þ, where R
is the position of the trap, Rim is the position of its mirror
image inside the metal, and r is the position of the dot. To
estimate the distance between the trap and the top gate, we
consider a double-dot geometry with an interdot separation
of 200 nm. The upper inset of Fig. 3(c) shows the shift
δε in the double-dot detuning parameter ε, caused by a charge
trap separated from the dot by a lateral distance xCT.

Here, xCT ¼ 0 corresponds to a charge trap located directly
above the right dot. For a trap located 0.1 nm below the gate,
the resulting shifts fall into the range0 − 9 μeV, as consistent
with experimental measurements of detuning fluctuations σε
[40,44–47].
Our perturbative results for the dominant ST splittings

are shown in Fig. 3(c), as obtained on either side of the
triplet crossover, at locations ℏω ¼ 550 μeV (STorb) or
ℏω ¼ 650 μeV (STval). As expected, the energy fluctua-
tions are strongly suppressed for STval. We can also
estimate dephasing rates for QDHQ from the relation Γ�

2 ¼
ðσε=

ffiffiffi
2

p
ℏÞj∂EQ=∂εj [20,48,49]. Assuming the charge trap

has equal switching rates between its empty and occupied
states, we can approximate the standard deviation ofESTvalðorbÞ
fluctuations as ð1=2ÞδESTvalðorbÞ , so that σεj∂EQ=∂εj ≈
ð1=2ÞδESTvalðorbÞ . Dephasing estimates obtained in this way
are also reported in themain panel of Fig. 3(c). Here, we note
that although, in general, semiconductor nanostructures are
accepted to be subject to 1=f charge noise [50], recent
experimental work suggests that some noise spectra in
Si=SiGe devices are more consistent with an individual or
a small number of defects [42]. For the settings considered
here, we see that the dephasing rates for STval vs STorb can
differ by a very large factor (∼10), depending on the lateral
position of the trap. The lower curve, associated with ESTval

,
appears to be more consistent with recent experimental
measurements of Γ�

2 ¼ 6–210 MHz in a Si QDHQ [40],

FIG. 3. Effects of e − e interactions, interface steps, and a charge trap on the excitation energies of a two-electron dot. Solid symbols
refer to the lowest ST excitation, which defines the qubit, and open symbols refer to the higher ST excitation. (a) ST splittings for fixed
terrace width,W ¼ 101 nm, with the dot center equidistant between two steps. [See Fig. 2(a) for device geometry.] The single-electron
valley splitting Eval is also shown. ESTorb

is strongly suppressed below Eorb (not shown) over its entire range, due to strong e-e
interactions. A crossover is observed between regions dominated by STorb vs STval. Here, ESTorb

is typically too small to form practical
qubits in the small-ℏω regime. Insets: charge densities of S, Torb, and Tval states, for two different confinement strengths. (b) ST
splittings for fixedW=D ¼ 2, where the dot diameterD depends on ℏω (soW also depends on ℏω). Here, ESTval

≈ Eval is approximately
constant, indicating that VOC is mainly determined by the overlap of the wave functions with interface steps. Insets: the same quantities
are plotted as a function of W=D for fixed ℏω, showing that ESTval

is more strongly affected by the steps than ESTorb
. In (a) and (b), the

triplet crossover occurs in an experimentally relevant regime. (c) Shift in EST , and corresponding qubit dephasing rate Γ�
2, as a function

of the shift in detuning, ε, due to the occupation of a charge trap near the top gate. Results are only shown for the low-lying excitations,
just below or above the triplet crossover in (a). Γ�

2 is significantly lower for qubits defined by Tval since S and Tval have nearly identical
charge distributions. Lower inset: schematic of the full double-dot geometry, with the smaller FCI simulation domain indicated. Upper
inset: shift of the detuning ε of a double dot, for dots separated by 200 nm, due to the occupation of a charge trap at lateral position xCT,
defined in the lower inset.
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lending support to the low-noise qubit design proposed here.
We note that using valley vs orbital triplet states can have
additional effects on qubit operation, unrelated to coherence.
For example, they could affect the tunnel coupling, resulting
in different gate times. If necessary, such changes may be
compensated by tuning other devices’ parameters, such as
the confinement of the second dot, which would have little
effect on qubit coherence. Finally, our results may also help
to explain the much higher dephasing rates observed in a
GaAs QDHQ [51], Γ�

2 ¼ 0.12–1.4 GHz, which has no
Tval state. (Note that the current results are obtained using
Si materials parameters.)
Summary.—Using a combination of tight-binding and

full-configuration-interaction calculations, we have shown
that an important crossover occurs in the low-lying triplet
state of two-electron dots in Si=SiGe: for weak confine-
ment, the orbital triplet is the dominant excitation, while for
strong confinement the valley triplet is dominant. We find
that strong e-e interactions and valley-orbit coupling
(induced by atomic steps at the quantum-well interface)
both play key roles in this behavior, in the physically
relevant operating regime. We further show that the charge
distribution of the valley triplet is similar to that of the
singlet, but differs from the orbital triplet. Consequently,
qubits based on valley-triplet excitations are much more
resilient to charge noise. These results are crucial for
successful implementations of multielectron qubits
in Si=SiGe dots, and also pertain to qubits formed in
MOS systems for which valley splittings and confinement
energies are typically higher than Si=SiGe systems [10,11].
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