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Quantum phase transitions occur when quantum fluctuation destroys order at zero temperature. With an
increase in temperature, normally the thermal fluctuation wipes out any signs of this transition. Here, we
identify a physical quantity that shows nonanalytic behavior at finite temperatures, when an interaction
parameter is quenched across the line of quantum phase transition. This quantity under consideration is the
long time limit of a form of quantum fidelity. Our treatment is analytic for XY chain and 2D Kitaev model
and is numerical for a 3D Hamiltonian applicable to Weyl semimetals.
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The dynamics of quantum many-body system at nonzero
temperatures has always been an intriguing area of study,
primarily because of the interplay between the quantum and
the thermal fluctuations [1–3]. The dominance of thermal
fluctuation with increasing temperature makes the percep-
tion of quantum noise limited to low temperatures only [4–
7]. The question is whether a quantum phase transition
(QPT), exclusively driven by quantum fluctuations at zero
temperature, has any impact on the behavior of the system
at nonzero temperature and whether some physical quantity
measured at finite temperature bears the signature of the
QPT occurring at zero temperature [8]. Over the past
decades, this issue has been addressed through the studies
of quantum fidelity. At zero temperature, fidelity generally
vanishes in the thermodynamic limit at a quantum critical
point as on two sides of this point the ground state wave
functions are structurally different (Anderson’s orthogon-
ality catastrophe) [9–14]. At finite temperatures, general-
ized forms of fidelity have been studied in different systems
[15–21], and some of them do detect the QPT through
nonanalytic signature in their logarithms at low temper-
atures [15,16]. An important work in this direction is by Li,
Zhang, and Lin [22], who have calculated quantum
coherence for XXZ chain using transfer matrix renormal-
ization group technique and have detected the presence of
QPT at finite values of temperature. Recently, Hou et al.
[23] have studied, at finite temperatures, a form of rate
function for Loschmidt amplitude and detected the pres-
ence of QPT. However, all these works were limited to 1D
systems and were not applicable to very high temperatures.
The objective of this Letter is to look for a quantity that

has a robust nonanalytic behavior at zero as well as finite
temperature while moving across the quantum phase
boundary through the quench of a parameter. At a temper-
ature T, we perform a sudden quench of the Hamiltonian
from H to H0 at time t ¼ 0 and define quantum fidelity as

F t ≡ Tr½ρt ρ0�
Tr½ρt�Tr½ρ0�

; ð1Þ

where ρ0 is the density matrix at t ¼ 0 and ρt is the same
after the system has evolved for time t under the
Hamiltonian H0. At zero temperature, this expression
reduces to the usual expression for the probability
jhψð0ÞjψðtÞij2 (where jψðtÞi is the normalized wave
function at time t) called the Loschmidt echo and the
logarithm of it shows singularities as a function of time,
indicating a dynamical quantum phase transition [24].
However, at finite temperatures, there is no such singularity
(see, however, Ref. [23]). Since logarithm of F t is propor-
tional to the system size, we may define a measurable
quantity called rate function as

rðt; βÞ≡ − lim
N→∞

1

N
logF t: ð2Þ

The quantity, which turns out to be useful, is the long-time
average of the rate function, defined as

ra ≡ lim
τ→∞

1

τ

Z
τ

0

rðt; βÞdt: ð3Þ

We shall consider two integrable quantum spin models,
namely the XY chain and the Kitaev model on a honey-
comb lattice. Each of these Hamiltonians shows a quantum
critical point (QCP) at T ¼ 0. We shall show analytically
that the quantity ra shows a nonanalytic behavior at the
QCP at any finite temperature just as at T ¼ 0. Of course,
there does not exist an actual quantum phase transition at
T > 0 but our detector bears a signature of the zero-
temperature QCP even at T > 0. One important strength
of our detector is that for a d-dimensional lattice, the
calculation of the relevant quantity boils down to the
evaluation of a d-dimensional integral. This enables our
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method to be applicable to higher dimensional systems. In
fact, we shall also show (numerically) that for a three-
dimensional Hamiltonian applicable to Weyl semimetals,
the quantity ra shows a nonanalyticity at the phase
boundary, although only for low temperatures. We shall
now discuss the case of 2D Kitaev model in detail and then
go over to XY chain and the Hamiltonian for semimetals.
The Hamiltonian of the Kitaev spin-1=2 model on a

honeycomb lattice is defined as

H ¼
X
i;j

Jαsαi s
α
j ; ð4Þ

where i, j run over all the nearest-neighboring pairs on the
honeycomb lattice, α is 1 or 2 or 3 depending on the
location of the sites, as shown in Fig. 1, and sα ¼ σα where
σ are the Pauli spin matrices. This model contains three
interaction parameters Jα. It can be shown that in the
vortex-free sector, this Hamiltonian can be written as a sum
of commuting Hamiltonians [25–27]:

H ¼
X
q⃗

Hq⃗; Hq⃗ ¼ aq⃗σ3 þ bq⃗σ1; ð5Þ

where each component of q⃗ ¼ ðqx; qyÞ spans over a square
lattice in the range ð−π; πÞ and the coefficients are given by
[28,29]

aq⃗ ¼ J3 − J1 cos qx − J2 cos qy;

bq⃗ ¼ −J1 sin qx þ J2 sin qy: ð6Þ

The ground state shows a gapless phase in the region
satisfying triangular inequality jJi − Jjj ≤ Jk ≤ Ji þ Jj,
where i, j, and k are cyclic permutations of 1, 2, and 3.
The gapless and gapped phases are separated by a phase
transition line. The two phases are topologically different
[25–27] and can be detected by studying Loschmidt echo
[30]. We set J1 ¼ J2 ¼ 1 so that the critical line occurs at
J3 ¼ 2. We shall prove analytically that for a quench

J3¼J0→J3¼J, the second derivative (with respect to J)
of the rate function ra diverges algebraically with an
exponent 1=2 at the phase boundary J ¼ 2. We shall
consider only the vortex-free sector and comment on this
aspect later.
The decomposition of the Hamiltonian in Eq. (5) en-

ables one to express the density matrix ρ ¼ expð−βHÞ=
Tr½expð−βHÞ� in terms of exp ð−βHq⃗Þ, where β is the
inverse temperature scaled by Boltzmann constant. To
calculate the exponential of Hq⃗, we write

Hq⃗ ¼ λq⃗Gq⃗ ð7Þ

and, exploiting the fact that G2
q⃗ is unit matrix, obtain

the quantum fidelity of Eq. (1) and from there the rate
function as

rðt; βÞ ¼ log 2 −
1

4π2

Z
q⃗
Aq⃗dq⃗ ð8Þ

with

Aq⃗ ¼ log ½1þ tanh2βλq⃗f1 − 2sin2λ0q⃗tsin
2ðϕq⃗Þg�; ð9Þ

where prime refers to the postquench Hamiltonian and
ϕq⃗ ¼ θq⃗ − θ0q⃗, where θq⃗ is defined by

cos θq⃗ ¼ aq⃗=λq⃗; sin θq⃗ ¼ bq⃗=λq⃗ ð10Þ

and θ0q⃗ by similar expressions with primed quantities.
As mentioned earlier, at zero temperature, the tanh term

is 1, and Aq⃗ shows singularities as a function of time, but at
finite temperature no such singularity occurs since the
argument of the logarithm never vanishes. The long-time
average of the rate function, as defined in Eq. (3), can be
calculated from Eq. (8) using standard results [31]:

ra ¼ 3 log 2 −
1

4π2

Z
q⃗
dq⃗ logð1þ αq⃗Þ

−
1

2π2

Z
q⃗
dq⃗ log ½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γq⃗sin2ðθq⃗ − θ0q⃗Þ

q
�; ð11Þ

where αq⃗ ¼ tanh2βλq⃗, γq⃗ ¼ 2αq⃗=ð1þ αq⃗Þ.
A few subtle issues need to be discussed: (1) The angle θ

(θ0) is undefined where λ (λ0) is zero in the q⃗ plane, but this
fact will not spoil the integration in Eq. (8) because we may
exclude small regions R and R0 around λ ¼ 0 and λ0 ¼ 0,
respectively, from the integral and evaluate it in the limit
R → 0, R0 → 0. (2) In Eq. (3), the quantity λ0τ → ∞ as
τ → ∞ since the point λ0 ¼ 0 is excluded from the
integration. (3) The long-time limit of fidelity has also
been studied in Ref. [32], but our procedure of calculating
the long-time limit is different from theirs. They have first
calculated the long-time limit of fidelity and then taken the

J1 , J2 , J3 = J0

J1 , J2 , J3 = J

FIG. 1. Kitaev model on honeycomb lattice. The continuous,
dashed, and dotted lines correspond to xx, yy, and zz interactions,
respectively. We study a quench where J1 and J2 are kept
unchanged and J3 is changed instantaneously from J0 to J. For
most of the results here, we shall keep J0 ¼ 1.
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logarithm to get the rate function while we have taken the
long-time limit of the rate function itself, since the
experimentally measurable quantity is the rate function
[33] and not the fidelity (F t). (4) When ρt in Eq. (1) is
replaced by the equilibrium density matrix for the post-
quench Hamiltonian, namely, ρ0ðH0Þ ¼ exp ð−βH0Þ, one
gets a measure of fidelity [34,35] different from ours, since
the Hamiltonian being integrable, the t → ∞ limit of ρt is
not the same as ρ0ðH0Þ.
In this Letter, we shall study a particular type of quench

where the interaction parameters J1 and J2 of the Kitaev
Hamiltonian Eq. (4) is kept fixed at 1, so that the gapless
phase exists for 0 ≤ J3 ≤ 2 and the gapped phase for
J3 > 2. We quench the parameter J3 from J0 to J and
study how the rate function ra depends on J when J
approaches 2 from being within the gapless phase.
Thus, the first and second derivatives of the rate function

are obtained as (omitting the suffix q⃗)

∂ra
∂J

¼ −
1

4π2

Z
q⃗

dq⃗
λ0

BC ð12Þ

∂
2ra
∂J2

¼ −
1

4π2

Z
q⃗

dq⃗
λ02

�
−
�
1þ 1

2D

�
B2C2

− 2αB sin θ0 sinð3θ0 − 2θÞ
�
; ð13Þ

with B ¼ ð2 − γÞ=ðDþD2Þ, C ¼ α sin θ0 sinð2θ0 − 2θÞ,
and D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γsin2ðθ0 − θÞ

p
.

Numerical integration shows that when J approaches the
phase boundary from below, there appears a nonanalyticity
at any finite temperature—the rate function shows a kink,
the first derivative remains continuous but undergoes a
change of slope, while the second derivative shows power-
law divergence with exponent 1=2 (Fig. 2). The expressions
for the first and second derivatives contain 1=λ0 and 1=λ02,
respectively, in the integrand. Indeed, whenever J lies
within the gapless phase, the region of integration includes
a point q⃗ ¼ q⃗c where λ0 vanishes. However, the presence of
this point leads to a nonanalyticity only when J is on the
phase boundary (see the Supplemental Material [36]).
We now set out to study analytically the behavior of the

rate function as a function of the postquench parameter J.
Instead of using Eqs. (12), (13), we shall rather start with
the expression of ra as in Eq. (11). Using the power series
expansion of log ð1þ ffiffiffiffiffiffiffiffiffiffiffi

1 − x
p Þ for any x in the range

0 < x < 1, we obtain

ra ¼ log 2 −
1

4π2

Z
q⃗
dq⃗ logð1þ αÞ

þ 1

8π2
X

n¼1;2;���
cn

Z
dq⃗ γnsin2nðθ − θ0Þ; ð14Þ

with c1 ¼ 1, c2 ¼ 3
8
, c3 ¼ 5

24
, etc. We now express the

integrand as

γnsin2nðθ − θ0Þ ¼
�
tanh βλ

λ

�
2n
�

2ðJ − J0Þ2
1þ tanh2βλ

�
n
�
b0

λ0

�
2n

ð15Þ

and observe that any nonanalytic behavior of this function
may arise, if at all, only from a small region around the
point where λ0 ¼ 0. The location of this point is given by
q⃗ ¼ ðqc; qcÞ with qc ¼ cos−1ðJ=2Þ for J ≤ 2. Around this
point λ ≈ jJ0 − Jj and when J is close to 2 from below, we
obtain

ra ¼ log 2 −
1

4π2

Z
q⃗
dq⃗ logð1þ αÞ

þ 1

8π2
X
n

c0n

Z
dq⃗

�ðJ − J0Þb0
λ0

�
2n
; ð16Þ

where c0n ¼ cn½2tanh2βðJ0 − 2Þ=f1þ tanh2βðJ0 − 2Þg�n.
Indeed, this equality will not work away from the phase
boundary. Numerical results also support this equality
(Fig. 2). Hence, we only need to calculate the integral

In ≡ ðJ − J0Þ2n
Z

π

qx;qy¼−π
dqx dqy

�
b0

λ0

�
2n
; n¼ 1;2;…:

ð17Þ
As we are interested only in the behavior of rate function
when the postquench parameter J approaches the value 2

ra

J

100

0 1 2

0.04

0.12

0.20

ra / J (b)(a)

J
0 1 2

0.4

0.2

0.2

0

2ra / J2

J
1 2

20

10

0

0
30

 2ra / J2

0.3/ x

2 - J

0.001 0.010.0001
1

10

100
(c) (d)

FIG. 2. (a)–(c) Rate function ra and its derivatives computed
numerically from Eqs. (11)–(13) with J0 ¼ 1 and inverse temper-
ature β ¼ 2. Nonanalyticity appears only at the phase boundary
J ¼ 2. (d) Scaling of the second derivative as J approaches the
value 2 from below. Also, in (d), the violet squares are obtained
by integrating over the entire region −π < ðqx; qyÞ < π while the
green crosses are obtained for −0.1π < ðqx; qyÞ < 0.1π. This
shows that only the region near the origin is important for the
nature of divergence.
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within the gapless phase, we introduce a parameter ϵ by
J ¼ 2 − ϵ2, ϵ ¼ ffiffiffiffiffiffiffiffiffiffiffi

2 − J
p

and express In as a power series:

In ¼ a0 þ a1ϵþ a2ϵ2 þ a3ϵ3 þ � � � : ð18Þ

It can be shown (see the Supplemental Material [36]) that
up to leading order in ϵ, for any value of n, a1 ¼ 0 and
a3 ≠ 0. In view of Eq. (16), this proves that at any
temperature

∂
2ra
∂J2

∼
1ffiffiffiffiffiffiffiffiffiffiffi
2 − J

p : ð19Þ

We mention here that a quantity related to fidelity has been
previously observed to show logarithmic divergence in zero
temperature [37]. We also mention some related points of
interest: (1) If the prequench value of J0 is chosen to be in
the gapped phase, the divergence with respect to variation
of J remains unchanged (see the Supplemental Material
[36]). (2) No singularity in rate function is observed when it
is studied as a function of J0 (which is not surprising, since
the right-hand side of Eq. (15) does not show any
nonanalytic behavior at λ ¼ 0). (3) If we approach the
phase boundary keeping J > 2, indeed we observe a
nonanalyticity but the nature of singularity is different
from the one for J < 2. (4) As we have remained within the
vortex-free sector of the Kitaev model, a question arises as
to whether the excitation of vortices at finite temperatures
destroys the singularity in the rate function ra. In this
connection, we note that the expression of our rate function
Eq. (16) has the form of a series, each term of which is an
integral with a prefactor. The prefactor involves temper-
ature but not the postquench value of the parameter, while
the integral involves pre and postquench value of the
parameter but not temperature. Also, it has been shown
[38] that the vortex excitation in 2D Kitaev model being
adiabatic with temperature does not induce any phase
transition. Hence, the prefactor will not show any nonana-
lytic behavior as a function of temperature, and it is
expected that the rate function will not also show any
singularity at a finite temperature due to the presence of
vortex excitations. However, for the 3D Kitaev model, the
situation is different since the excitation of vortices triggers
a thermal phase transition here. This particular model
therefore opens up a future direction of study [39].
It is interesting to consider the case of zero temperature.

The rate function in Eq. (11) is now

ra ¼ 2 log 2 −
1

2π2

Z
q⃗
dq⃗ log ½1þ j cosðθq⃗ − θ0q⃗Þj�: ð20Þ

This rate function shows a kink at the phase boundary only,
irrespective of whether the prequench parameter J0 is in the
gapless phase or in the gapped phase (Fig. 3). It has been
shown [30] that the Loschmidt probability as a function of

time shows peaks wrongly for quenches within the gapless
phase. Hence, we conclude that after taking the long-time
limit, the rate function ra correctly shows a kink only at the
phase boundary.
We shall now turn to XY Hamiltonian defined by

HXY ¼ −
1

2
ð1þ hÞ

XN
i¼1

s1i s
1
iþ1

−
1

2
ð1 − hÞ

XN
i¼1

s2i s
2
iþ1 − Γ

XN
i¼1

s3i ; ð21Þ

where h is the anisotropy parameter, Γ is the transverse
field, and sα ¼ σα, the Pauli spin matrices. It can be
shown by using Jordan-Wigner transformation that this
Hamiltonian can be written as a sum of commuting
Hamiltonians [3,40]:

H ¼
X
q

Hq; Hq ¼ aqσ3 þ bqσ1; ð22Þ

where q spans over ð0; πÞ and the coefficients are given by
aq ¼ Γþ cos q, bq ¼ h sin q. The line −1 < Γ < 1, h ¼ 0

separates the two ordered phases and the lines Γ ¼ �1
separate the ordered and the disordered phases. Using the
expressions for aq and bq, one can define θq from Eq. (10)
and obtain the rate function and its derivatives from
Eqs. (11)–(13) noting that q should now be integrated
from 0 to π. Numerical integration shows (see the
Supplemental Material [36] for figures) that (1) for a
quench from h ¼ h0 → h ¼ h0 (with any Γ in the range
−1 < Γ < 1) the first derivative (with respect to h0) of the
long-time rate function ra shows a discontinuity at the QCP
h0 ¼ 0 and (2) for a quench from Γ ¼ Γ0 → Γ ¼ Γ0 at any
h, the first derivative (with respect to Γ0) of ra shows a
discontinuity at the QCP Γ0 ¼ �1. Using the approximation
in Eq. (16), one can calculate the amount of discontinuity
at infinitely large temperature (see the Supplemental
Material [36]):

ð∂ra=∂Γ0ÞΓ0¼1þ − ð∂ra=∂Γ0ÞΓ0¼1− ¼ β2ð1 − Γ2
0Þ=h; ð23Þ

ð∂ra=∂h0Þh0¼0þ − ð∂ra=∂h0Þh0¼0− ¼ 2β2h20ð1 − Γ2Þ: ð24Þ
We shall now turn to 3D Hamiltonians. The Hamiltonian

for Weyl semimetals with broken time reversal symmetry
can be written as [41,42]

0.2

0.1

0
1 2 3

ra

J

J0=1

J0=3
 0.15

 0.05

0.15

0.05

1 2 3

J

ra / J

J0=3

J0=1
(a) (b)

FIG. 3. (a) Rate function ra and (b) ∂ra=∂J computed from
Eq. (20) at zero temperature with the prequench parameter J0 ¼ 1
(in gapless phase) and J0 ¼ 3 (in gapped phase). Nonanalyticity
appears only at the phase boundary J ¼ 2.
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Hq⃗ ¼ aq⃗σ3 þ bq⃗σ1 þ cq⃗σ2; ð25Þ

where aq⃗ ¼ J3 − cos qx − cos qy − cos qz, bq⃗ ¼ sin qx,
cq⃗ ¼ sin qy, and q⃗ runs over a simple cubic lattice in the
range ð−π; πÞ. The ground state of this Hamiltonian shows
a gapless phase for J3 < 3 and a gapped phase for J3 > 3.
We consider a quench J3 ¼ J0 → J3 ¼ J and note that one
can arrive at Eqs. (8), (9) in a straightforward manner,
with ϕq⃗ being the angle between the unit vectors
ðbq⃗=λq⃗; cq⃗=λq⃗; aq⃗=λq⃗Þ and ðb0q⃗=λ0q⃗; c0q⃗=λ0q⃗; a0q⃗=λ0q⃗Þ. The
evaluation of the rate function ra now reduces to the
computation of an integral in the q⃗ space and we observe
numerically that the first derivative (with respect to J) of ra
shows a change of slope at the QCP J ¼ 3 both for J0 < 3
and > 3 (see the Supplemental Material [36] for figures). It
is important to mention that, unlike the previous two cases,
this singularity is visible only at low temperatures. When
the time reversal symmetry is not broken, cq⃗ ¼ 0 in
Eq. (25) and one has the topological nodal line semimetals
[43]. In this case also, one observes a change of slope at
J ¼ 3 of the curve ∂ra=∂J vs J.
To conclude, we explore the finite temperature behavior

of three integrable quantum spin models and observe a
nonanalyticity in the mixed state fidelity at the phase
boundary. The rate function can be written [Eq. (16)] as
a series, each term of which is an integral independent of
temperature with a prefactor involving temperature. It is the
integral from which the nonanalytic behavior originates (at
all temperatures in 1D, 2D and at low temperatures in 3D).
The fact that the quantity in question is insensitive to
thermal fluctuations makes it a potential candidate to be
studied experimentally as a good detector of quantum
phase transition. It would be interesting to explore how
our rate function behaves for other integrable and non-
integrable Hamiltonians. Work in this line is in progress.
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