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Nodal lines are symmetry-protected one-dimensional band degeneracies in momentum space, which can
appear in numerous topological configurations such as nodal rings, chains, links, and knots. Very recently,
non-Abelian topological physics have been proposed in space-time inversion (PT) symmetric systems. One
of the most special configurations in such systems is the earring nodal link, composing of a nodal chain
linking with an isolated nodal line. Such earring nodal links have not been observed in real systems. We
designed phononic crystals with earring nodal links, and experimentally observed two different kinds of
earring nodal links by measuring the band structures. We found that the order of the nodal chain and line
can be switched after band inversion but their link cannot be severed. Our Letter provides experimental
evidence for phenomena unique to non-Abelian band topology and our acoustic system provides a
convenient platform for studying the new materials carrying non-Abelian charges.
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Topological materials, such as topological insulators [1–
11], Weyl or Dirac points [12–20], and nodal line semi-
metals [21–30], have attracted much attention in both
theory and experiment. These materials can be character-
ized by quantized topological invariants, that can be
classified by Abelian groups Z or Z2. Very recently, a
new type of topological classification using non-Abelian
groups has been proposed for space-time inversion sym-
metric multiband systems [31], prompting the discovery of
braiding topological structures [32–42] in non-Abelian
systems.
The band structure in non-Abelian systems supports

some special configurations in moment space protected by
non-Abelian topological charges. One of the most interest-
ing configurations is the earring nodal link [31], the
existence and robustness of which cannot be explained
by conventional Abelian topology that defines topological
invariants by considering a single band gap. Such earring
nodal links can be observed in a three-band system, where
the non-Abelian topology can be described by a quaternion
charge of “−1.” In this Letter, we report the first exper-
imental observation of earring nodal links and their non-
trivial evolution as the system parameter changes. We
designed and fabricated three-dimensional (3D) phononic
crystals and experimentally observed two kinds of earring
nodal links.
In a three-band PT-symmetric system, the space of the

Hamiltonian without degeneracies in the momentum space

is M3 ¼ Oð3Þ=Oð1Þ3, where OðNÞ is the N-dimensional
orthogonal group. Its fundamental homotopy group is
the non-Abelian quaternion group π1ðM3Þ ¼ Q ¼
f−1;�i;�j;�k;þ1g, with group elements satisfying
i2 ¼ j2 ¼ k2 ¼ −1, and ij ¼ −ji ¼ k. The characteristics
of the global nodal line configuration can be described by
these non-Abelian topological charges. In this Letter, we
focus on the quaternion charge −1.
Let us consider a three-band 3D system. We start by

constructing a triple degeneracy lying at the intersection
line of two mirror-invariant planes in the momentum space.
The little group of a k point on the kz axis (i.e., the
intersection of two mirror-invariant planes kx ¼ 0 and
ky ¼ 0) is C2v. Suppose that two of the three eigenmodes
on the kz axis have opposite parities on both the x and y
mirror planes, we can write the 3-by-3 representations of
the two mirror operators as

Mx ¼

0
B@

−1 0 0

0 1 0

0 0 1

1
CA; My ¼

0
B@

1 0 0

0 −1 0

0 0 1

1
CA: ð1Þ

Then, (see Supplemental Material [43]) the general form
of the k · p Hamiltonian respecting PT and C2v symmetries
near the kz axis (up to the second order of kx, ky) can be
written as
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Hðkx;ky;kzÞ

¼

0
B@

f1ðkz;k2x;k2yÞ wxykxky ðv0xþv1xkzÞkx
wxykxky f2ðkz;k2x;k2yÞ ðv0yþv1ykzÞky

ðv0xþv1xkzÞkx ðv0yþv1ykzÞky f3ðkz;k2x;k2yÞ

1
CA; ð2Þ

where fiðkz; k2x; k2yÞ ¼ giðkzÞ þ
P

j¼x;y k
2
jhijðkzÞ (j ¼ 1, 2,

3), w and v are arbitrary real numbers. A threefold dege-
neracy along the kz axis requires g1ðkzÞ ¼ g2ðkzÞ ¼ g3ðkzÞ,
which can appear accidentally with some specific system
parameters. As an example, we consider a specific
Hamiltonian

H1ðkx; ky; kzÞ

¼

0
B@

kz 0.5kxky 1.5kx
0.5kxky 0.3kz þ b ð1 − 0.2kzÞky
1.5kx ð1 − 0.2kzÞky 0

1
CA; ð3Þ

which is a special case of H in Eq. (2). The distribution of
the nodal lines of H1 is shown in Fig. 1(a). There is a triple
point at kz ¼ 0 plane when b ¼ 0, and the Hamiltonian (up
to first order and a frequency shift) in the transverse plane
of kz ¼ 0 will reduce to

H1ðkx; ky; kz ¼ 0Þ ¼ v0xkxλ̂2 þ v0ykyλ̂3

¼

0
B@

0 0 v0xkx
0 0 v0yky

v0xkx v0yky 0

1
CA: ð4Þ

Here, λ̂i denote the Gell-Mann matrices, and λ̂2, λ̂3, λ̂4
satisfy the angular momentum commutation relation
½λ̂i; λ̂j� ¼ iϵijkλ̂k (i; j ¼ 2, 3, 4, i ≠ j). As such, they form
a representation of spin-one operators λ̂2 ¼ Ŝx, λ̂3 ¼ Ŝy,
and λ̂4 ¼ Ŝz. The transverse Hamiltonian at the accidental
triple point, with the band dispersion shown in Fig. 1(d), is
in fact the two-dimensional (2D) spin-one Hamiltonian of a
Dirac-like cone [44,47–57] (see Supplemental Material
[43]) that has been studied widely as an effectively zero-
refractive-index system. When the wave vector winds
around the triple point one time along the green loop in
Fig. 1(a), the generalized argument ϕ ¼ argðvx0kx þ
ivy0kyÞ also changes 2π [43]. As a result, the triple point
behaves as a topological defect of the orthonormal frame
formed by the eigenvectors of the three bands, around
which the frame of eigenvectors rotates one turn about the
z axis as shown by the distribution of eigenvectors in
Fig. 1(e). The three color bars at each point in Fig. 1(e)
denote the three orthogonal real-valued eigenvectors at that
point. Therefore, we have demonstrated that the spin-one
Hamiltonian corresponds to 2π rotation of all three eigen-
states about the fixed axis (z axis), and this eigenstate frame
rotation is the key feature of the non-Abelian quaternion
charge −1 [31], as shown in Fig. 1(f) which shows the
rotation of the eigenstates frame on the unit sphere along
the green loop in Fig. 1(a). From the Abelian topological
viewpoint, the 2D spin-one triple point in Fig. 1(d) is
entirely accidental and has no topological protection
because the Berry phase around the triple point of every
band is zero [55–57]. From a multiple band viewpoint, the
2D spin-one triple point is protected by the conservation of
the quaternion charge −1 characterized by the winding of
eigenstates around the triple point. This explains why the
degeneracies between the three bands forming the Dirac-
like cone in 2D PT-symmetric crystals can never be fully
gapped and their evolution is governed by the non-Abelian
charge (See Figs. S1 and S2 [43]).
The above analysis indicates that this triple degenerate

point as the crossing point of the two nodal lines in
Fig. 1(a), is protected by the conservation of nontrivial
quaternion charge −1. These two nodal lines have to be
linked together in some way and cannot be completely
separated by tuning the system parameters. As shown in
Fig. 1(b), when b is changed to 0.15, a new nodal ring (red
circle) of the lower two bands appears between the two nodal
lines, which forms a nodal link with the blue nodal line and
forms a nodal chain with the red nodal line. The underlying

FIG. 1. (a) Nontrivial accidental triple degeneracy in momen-
tum space. The red (blue) nodal lines are formed by the lower
(upper) pair of bands. (b),(c) The two earring nodal link
configurations when two different perturbations (changing the
value of b from 0 to 0.15 and −0.15, respectively) are added to
the case of the nontrivial accidental triple degeneracy. (d) The
dispersion at kz ¼ 0 for (a). (e) Eigenstates on the kz ¼ 0 plane,
where the three color bars represent the three orthogonal
eigenstates and the gray circle corresponds to the green loop
in (a). (f) The rotation of the eigenstates frame on the unit sphere
along green loop in (a), where the spheres with the same color
trace out the trajectory of the eigenstates of each band. In (d)–(f),
cyan, light magenta, and green colors correspond to bands 1, 2,
and 3, respectively.
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mechanism is that the nontrivial non-Abelian quaternion
charge−1 cannot be changed by small perturbations, so the
green loop in Fig. 1(b) must encircle at least two nodal lines
with the same orientation of the same pair of bands, which
ensures the existence of a nodal ring between the two nodal
lines. When a different perturbation is applied, such as
changing b to −0.15, another configuration of the earring
nodal link appears, as shown in Fig. 1(c). The newly
emerging blue nodal ring of the upper two bands and the
blue line form a nodal chain, while the blue nodal ring and
red nodal line form a nodal link. These hybrid configurations
of a nodal link and nodal chain, called earring nodal links
[31], can be understood using non-Abelian topology and
cannot be explained by Abelian topology.
To experimentally observe the earring nodal links similar

to those shown in Figs. 1(b) and 1(c), we designed a cubic
layer-by-layer phononic crystal with a unit cell consisting of
two stacked cuboids with different sizes that are twisted by
π=2 along the z direction. The sample has two mirror
symmetries and inversion symmetry, which are the neces-
sary conditions to construct the earing nodal links in k space.
The space group is Pmmm. The unit cell is shown in
Fig. 2(a), and the structural parameters are a ¼ 22.6 mm,
b ¼ 18.8 mm, w2 ¼ 7.1 mm, h1 ¼ 6 mm, h2 ¼ 6 mm, and
h ¼ 12mm. Our full-wave simulations are performed using
COMSOL Multiphysics. As this structure has mirror
symmetries in both the x and y directions, each mode has
well-defined mirror parity in the corresponding mirror

planes. The simulated dispersion curves along the kz
direction with w1 ¼ 1.6 mm are shown in Fig. 2(b), and
the pressure field distributions for the eigenstates in bands
2–4 have three different mode symmetries ðþ;þÞ, ðþ;−Þ,
and ð−;þÞ as indicated in the figure. The three bands
intersect each other, and the red (blue) points represent the
nodal points of the two lower (higher) bands. Since the little
group of a general k point on the kz axis is C2v, and these
three bands satisfy the representation given in Eq. (1), the
dispersion can be captured faithfully by the model
Hamiltonian in Eq. (2) which gives the k · p Hamiltonian
for the three bands near the kz axis. When w1 is increased to
3.0 mm, bands 2–4 become accidentally degenerate at one
point, as shown in Fig. 2(c). Increasingw1 to 3.9 mm, bands
2–4will intersect each other again. The nodal lines in k space
are found numerically and are shown in Figs. 2(e)–2(g)
(solid lines). They have the same features as the model
Hamiltonian shown in Figs. 1(a)–1(c). We verify the non-
Abelian topological charge in the full-wave simulations (see
Supplemental Material [43]), and the effective eigenstate
frames obtained along the loop are plotted on the unit sphere
in Fig. 2(h). This shows the 2π rotation of all three
eigenstates on the unit sphere about the z axis, which
confirms that the earring nodal link in the real phononic
crystal is protected by a quaternion charge −1.
Using 3D printing, we fabricated an experimental sample

containing 21 × 21 × 21 unit cells, as shown in Fig. 3(a).
The sample has the same symmetry as the Hamiltonian H1

FIG. 2. (a) The unit cell of the phononic crystals. (b)–(d) The corresponding band structures along kz with w1 ¼ 1.6, 3.0, and 3.9 mm.
ðþ;þÞ indicates that the sound pressure field of the eigenmode is even in both the x and y directions at the intersection of the two mirror
planes kx ¼ ky ¼ 0. ðþ;−Þ indicates that the pressure field is an even mode in the x direction and an odd mode in the y direction, and
ð−;þÞ indicates that the pressure field is an odd mode in the x direction and an even mode in the y direction. The black dots mark three
eigenstates in bands 2–4 with different symmetries, and the distribution of the pressure fields is shown in the illustration. The red (blue)
dots represent the nodal points of band 23 (band 34). (e)–(g) The distribution of nodal lines in (e)–(g) corresponding to the
band structures in (b)–(d), respectively. The red and blue dots in (e)–(g) correspond to the red and blue nodal points in Figs. 3(b)–3(d)
[Figs. 3(f)–3(h)]. (h) The rotation of the eigenstate frame on the unit sphere along green loop at kz ¼ 0.5π=h in full-wave simulations.
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and exhibits the earring nodal links as shown in Fig. 2(e).
We place an acoustic point source at the position of the red
star. We insert a movable microphone (diameter ∼0.7 cm,
B&K Type 4187) into the sample through the interstitial
voids to scan the acoustic field of the whole sample. The
band dispersions on the planes of kx ¼ 0 and of ky ¼ 0 at
different frequencies are obtained experimentally by per-
forming 3D Fourier transforms of the scanned fields, and
are compared with numerically computed equal-frequency
contours (white lines), as shown in Figs. 3(b)–3(d). At each
frequency, four theoretical nodal points are marked in red
or blue, helping us to find the nodal points from the
experimental data which are located at the intersections of
equal-frequency contours. The nodal points in Fig. 3(b)
correspond to the red dots in Fig. 2(e) at the ky ¼ 0 plane.
The nodal points in Figs. 3(c) and 3(d) correspond to the
red and blue dots in Fig. 2(e) at the kx ¼ 0 plane,
respectively. Hence, the nodal links with earring shape
are verified experimentally.
To demonstrate the exotic evolution of the earring nodal

link protected by the conservation of the non-Abelian −1
charge, another sample [Fig. 3(e)] with w1 ¼ 3.9 mm
corresponding to Fig. 2(g) was fabricated. The band

dispersions obtained using the Fourier transform of the
scanned fields are shown in Figs. 3(f)–3(h) for different
frequencies, and we can see the position of the nodal point
with the help of the theoretical result. Hence, the other
configuration of earring nodal links, whose existence is
protected by the quaternion charge −1, is also observed in
experiment.
In summary, we showed theoretically that the triple point

characterized by a 2D spin-one Hamiltonian is related to
the non-Abelian quaternion charge −1 in a 3D system,
which shows that the horizon of topological protection can
be broadened if we extend the scope from Abelian to
non-Abelian and also contributes to the understanding
of the spin-one conical diffraction effect [45,46] (see
Supplemental Material [43]). We also revealed that inde-
structible earring nodal links can emerge from the pertur-
bation of the triple point, and we numerically verified the
non-Abelian topological charge −1 carried by nodal link
from full-wave simulations. Moreover, we experimentally
observed earring nodal links, and the earring nodal links
before and after band inversion are measured at two system
configurations, providing evidence for the nontrivial evo-
lution of the earing nodal link and experimentally mani-
festing the stability of the quaternion charge−1. Our results
provide an experimental basis for the theory of non-Abelian
band topology and offer a simple three-dimensional acous-
tic system as a platform to explore new phenomena
associated with multiband topology.
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