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We study, numerically, the charge neutral excitations (magnetorotons) in fractional quantum Hall
systems, concentrating on the two Jain states near quarter filling, ν ¼ 2=7 and ν ¼ 2=9, and the ν ¼ 1=4
Fermi-liquid state itself. In contrast to the ν ¼ 1=3 states and the Jain states near half filling, on each of the
two Jain states ν ¼ 2=7 and ν ¼ 2=9 the graviton spectral densities show two, instead of one, magnetoroton
peaks. The magnetorotons have spin 2 and have opposite chiralities in the ν ¼ 2=7 state and the same
chirality in the ν ¼ 2=9 state. We also provide a numerical verification of a sum rule relating the guiding
center spin s̄ with the spectral densities of the stress tensor.
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Introduction.—The exploration of topological phases of
matter started with the discovery of the fractional quantum
Hall (FQH) effect [1–3]. Under a strong magnetic field,
electrons in two dimensions form strongly correlated
quantum Hall systems. In the lowest Landau level (LLL)
limit, the kinetic energy of the electrons is constant, and the
two-dimensional electron system is driven to numerous
exotic topological phases depending on the filling fraction
and the effective interactions. The topological character-
istics of the FQH ground state and its charged excitations
can be understood using the wave function approach,
pioneered by Laughlin [2] and further developed by many
other authors [4–8]. The idea of the composite fermion
(CF) by Jain [9,10] provides an explanation of numerous
gapped FQH states observed in experiment [11,12] and an
intuitive construction of model wave functions, and sug-
gests the Abelian and non-Abelian braiding statistic of
quasiparticles and quasiholes [13,14]. Inspired by Jain’s
intuitive picture, a field theory description of FQH states
was developed based on the idea of flux attachment [15].
Subsequently, Halperin, Lee, and Read (HLR) proposed the
theory for FQH state at half filling, which predicts a gapless
Fermi-liquid state [16], that has been confirmed experi-
mentally [17].
Recently, modifications to the HLR theory have been

suggested to make it consistent with the symmetries of a
single Landau level. Particle-hole symmetry, which has
been long an issue [18,19], is restored in the Dirac CF
theory for FQH states near half filling [20]. The dipole
coupling of the CF to the electric field takes care of the
consistency of the theory with diffeomorphism [21,22]. In
combination, these two modifications lead to response

functions consistent with all known symmetries (see,
e.g., Ref. [23]).
An important feature of gapped quantum Hall states is

the existence of the neutral magnetoroton mode, first
suggested by Girvin, MacDonald, and Platzman (GMP)
[24] and later observed in experiment [25–27]. Though
GMP originally introduced the magnetoroton as a charge
density wave, recent works [28–30], employing the lowest
Landau level symmetries, suggest that the magnetoroton
has spin 2 and thus can be considered as a massive
“emergent graviton” in FQH systems. The magnetoroton
has been studied from many different perspectives: by
constructing the wave function [31,32] (which conforms
with the spin-2 structure), as an excitation of the CF
crossing Λ levels [33], by exact diagonalization [34–39],
or within the Dirac CF theory [21,30,40], where it is
interpreted as the shear deformation of the composite Fermi
surface. In the latter studies, the chirality of the magneto-
roton is determined by the direction of the residual
magnetic field seen by the Dirac CFs, and the positions
of the minima of the magnetoroton dispersion relation
match the experimental results [25–27] rather well.
Very recently, the Dirac CF theory has been generalized

to Jain states near ν ¼ 1
4
[41–43]. The situation with the

magnetoroton there seems to be very different from that
near ν ¼ 1

2
: it is necessary [43] to postulate a “Haldane

mode,” i.e., an extra high-energy magnetoroton (or multiple
magnetorotons), in addition to the low-energy magneto-
roton that emerges from the dynamics of the CFs. The
additional magnetoroton(s), which contribute to the pro-
jected static structure factor (PSSF), are crucial for the
Haldane bound [44]
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S4 ≥
js̄j
4
; ð1Þ

where S4 is the coefficient of the leadingQ4 [45] term in the
PSSF, and s̄ is the guiding center spin. On the LLL s̄ ¼
1
2
ðS − 1Þ where S is the Wen-Zee shift. The extra magneto-

roton was heuristically suggested to arise from the micro-
scopic structure of the CF. While the electric dipole
moment of the CF is constrained by its momentum
[21,43], a higher moment deformation of its shape could
in principle generate a spin-2 mode, which is the high-
energy magnetoroton.
In this Letter we investigate the magnetoroton excita-

tions, guided by the FQH spectral sum rules [43,46,47]
relating the chiral graviton spectral functions with s̄ and S4.
These sum rules constrain the spectral densities of the ν ¼
p=ð2np� 1Þ states and the Fermi-liquid-like state at
ν ¼ 1=4, and suggest the chiralities of the magnetorotons
there. We calculate the spectral densities numerically, from
which we read out the chirality of the magnetorotons and
verify the sum rules.
Graviton spectral sum rules.—In the LLL limit, when

the interacting energy is much smaller than the cyclo-
tron energy, one can obtain the exact sum rules involving
the spectral densities of the stress tensor [46,47]. In the
complex coordinate z ¼ xþ iy, the two components
of the traceless part of the stress tensor, Tzz ¼
1
4
ðTxx − Tyy − 2iTxyÞ and Tz̄ z̄ ¼ 1

4
ðTxx − Tyy þ 2iTxyÞ,

can be used to define two spectral densities [46]

I−ðωÞ ¼
1

Ne

X

n

jhnj
Z

dxTzzj0ij2δðω − EnÞ; ð2Þ

IþðωÞ ¼
1

Ne

X

n

jhnj
Z

dxTz̄ z̄j0ij2δðω − EnÞ; ð3Þ

where Ne is the total number of electrons, j0i is the ground
state, the sum is taken over all excited states jni in the
lowest Landau level, and En is the energy of the state jni
relative to the ground state. Physically, (2) and (3) are the
densities of spin-2 states with opposite chiralities at
frequency ω, and as such they depend on the microscopic
details of the FQH problem. The expressions for the
integrals of Tzz and Tz̄ z̄ over space in terms of the LLL
operators have been derived in Ref. [48]. We expect I−ðωÞ
and IþðωÞ to vanish at frequencies below the energy gap;
we also expect them to rapidly go to 0 at energies much
larger than the energy scale set by the Coulomb interaction.
Using the Uð1Þ charge conservation and the LLL limit of
momentum conservation, one can obtain the following
exact sum rules [43,46,47,49,50]:

Z
∞

0

dω
ω2

½I−ðωÞ þ IþðωÞ� ¼ S4; ð4Þ

Z
∞

0

dω
ω2

½I−ðωÞ − IþðωÞ� ¼
s̄
4

�
¼ S − 1

8
on LLL

�
: ð5Þ

For derivations of the sum rules see Refs. [43,47,55]. Both
sum rules do not rely on microscopic details and can be
applied for fractional quantum Hall states in the single
Landau level limit, where Landau-level mixing is ignored.
By definition I�ðωÞ are non-negative, therefore the sum
rules imply the Haldane bound (1). This bound is saturated
if and only if the FQH state is chiral, i.e., when one of the
spectral densities vanishes identically [i.e., I−ðωÞ ¼ 0 or
IþðωÞ ¼ 0] [56].
General Jain states.—The Wen-Zee shift S of the

general Jain state has been found previously [43,57,58]

νþ ¼ p
2npþ 1

; Sþ ¼ pþ 2n; ð6Þ

ν− ¼ p
2np − 1

; S− ¼ −pþ 2n: ð7Þ

The subscript index þ (−) corresponds to the residual
magnetic field seen by CFs being in the same (opposite)
direction as the applied magnetic field [21,43]. The
direction of the residual magnetic field determines the
chirality of the low-energy magnetoroton, the one induced
by the deformation of composite Fermi surface. If the
residual magnetic field is in the same (opposite) direction of
the external field, the low-energy magnetoroton has neg-
ative (positive) chirality. Consequently, we expect a low
energy peak in I−ðωÞ (IþðωÞ) of state νþ (ν−).
In Ref. [43] a Dirac CF model of the ν� states was pre-

sented. The model is supposed to be reliable at large p and
its result for the spectral densities can be summarized as

νþ∶
I−ðωÞ
ω2

¼ pþ 1

8
δðω − ωLÞ þ

n − 1

4
δðω − ωHÞ;

IþðωÞ ¼ 0; ð8Þ

ν−∶
I−ðωÞ
ω2

¼ n − 1

4
δðω − ωHÞ;

IþðωÞ
ω2

¼ p − 1

8
δðω − ωLÞ; ð9Þ

where ωL and ωH are the energies of the low- and high-
energy magnetorotons, respectively. Note that the delta
function δðω − ωHÞ may be broadened by the decay of the
high-energy magnetoroton or splits into several peaks. One
can introduce the integrated spectral densities

I∓ ¼
Z

∞

0

dω
ω2

I∓ðωÞ: ð10Þ

The prediction of Ref. [43] reads
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νþ∶ I− ¼ pþ 2n − 1

8
; Iþ ¼ 0; ð11Þ

ν−∶ I− ¼ n − 1

4
; Iþ ¼ p − 1

8
; ð12Þ

and from the sum rule (5) one finds the S4 coefficient of the
ν� states:

S4ðνþÞ ¼
pþ 2n − 1

8
; S4ðν−Þ ¼

pþ 2n − 3

8
: ð13Þ

Some remarks are in order. (i) For n ¼ 1 (near half
filling), there is no high-energy magnetoroton, and both ν�
states are chiral. (ii) For n ≠ 1, only the νþ state is chiral,
with S4 saturating the Haldane bound, while the ν− is not
chiral. (iii) Strictly speaking, the formulas presented above
are obtained in the large p limit, so the application of these
formulas for the case of, say, p ¼ 2 should be taken with a
grain of salt. On the other hand, one may expect that the
qualitative statements about the chirality of the magneto-
roton modes are robust.
The Fermi-liquid states.—In the Fermi-liquid state with

ν ¼ 1=2n the CFs are in zero emergent magnetic field and
form a Fermi liquid, whose excitations do not contribute to
the sum rule (5). The only contribution to the sum rule (5) is
from the high-energy magnetoroton (the Haldane mode).
Thus we find

I− − Iþ ¼ n − 1

4
: ð14Þ

Note that since the state is ungapped, the notion of S4 does
not apply. Naively we can associate n − 1 with the guiding
center spin for of the Fermi-liquid state. This, in turn, can
be explained if one thinks of the CF at ν ¼ 1=2n as a CF at
ν ¼ 1=2 state with 2ðn − 1Þ flux quanta attached. The CF at
ν ¼ 1=2 has no spin, while each attached flux quanta
increases the spin by 1

2
.

Looking at Eqs. (8), (9), and (14), we notice that the
contribution of the Haldane mode to the guiding center spin
of states near 1=2n is universal. In the Fermi-liquid state
ν ¼ 1=2, the spectral densities I−ðωÞ and IþðωÞ should be
identical due to the particle-hole symmetry, there-
fore I− − Iþ ¼ 0. (The same should be valid for the
PH-Pfaffian state [20].)
Numerical results.—The graviton spectral function has

been investigated on both boson and fermion fractional
quantum Hall effect (FQHE) states which include Moore-
Read states [59] as well as Laughlin states in Refs. [60,61].
In this Letter we present some results on the guiding center
spin s̄, the coefficient S4 of the Q4 term in the PSSF, and
show the FQHE graviton spectral functions.
We find good agreement with the theoretical predictions

of Eqs. (4) and (5). We will present some of the results in
this Letter, delegating to the Supplement Material some

others not germane to the main topic of the Letter. To obtain
the correct sum rules for the Coulomb interactions it is
necessary to use the complete stress tensor given in the
Supplemental Material (SM) [51] to evaluate the spectral
densities I−ðωÞ and IþðωÞ.
In Figs. 1 and 2 we present the results for the sum rules

for the Jain states at fillings 2=5, 2=7, and the Fermi liquid
state 1=4. We use the left vertical axis to represent s̄=4,
while the right vertical axis represents S4. As predicted by
Haldane [44] only chiral states saturate the S4 bound.
Generic states such as the ones obtained from the Coulomb
interaction exceed this bound [43,46]. The numerical
results of s̄ and S4 of Jain states converge to the theoretical
predictions in Eqs. (13), (6), and (7). We also numerically
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FIG. 1. Graphical representation of s̄ and S4 obtained from the
sum rules at electron filling factor of 2=5 for both the Coulomb
and the hard-core potentials. The latter is just a Haldane
pseudopotential with its value set to 1. We see that s̄=4 and
S4 are mostly identical, which is expected for a chiral state.
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FIG. 2. Same as in Fig. 1 but at electron filling factors ν ¼ 2=7
and ν ¼ 1=4 for the Coulomb potential. The results for the 2=7 for
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PHYSICAL REVIEW LETTERS 128, 246402 (2022)

246402-3



verify the Wen-Zee shift of the Fermi liquid state ν ¼ 1=4
predicted by Eq. (14). The numerical results presented in
Figs. 1 and 2 are highly nontrivial, they are the first
numerical check of the exact graviton spectral sum rules in
the LLL limit.
Figures 3–6 present the FQH graviton spectral functions

for ν ¼ 2=5, 2=7, 1=4, and 2=9. For ν ¼ 2=5, we use just
the Coulomb potential since we want to compare it to the
spectrum obtained with the hard-core potential, but for the

remaining three fractions we calculate the spectral func-
tions using a modified version of Coulomb. The two forms
give the same qualitative results for the distributions of the
graviton weights, particularly in instances where there are
two distinct energy sectors.
All the theoretical predictions the graviton’s chirality for

the general Jain states from Dirac CF model of Ref. [43] are
confirmed numerically. For n ¼ 1, the chirality of gravitons
is determined by the residue magnetic field seen by the
CFs, therefore the graviton of ν ¼ 2=5 has negative
chirality as showed in Fig. 3. With n ¼ 2 the chirality of
the low energy graviton is also determined by the residue
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FIG. 3. The graviton spectral function for the filling factor ν ¼
2=5 and pure Coulomb potential. The positive chirality total
strength of the spectral function is much less than the negative
chirality. As a result we have normalized the spectrum of both
chiralities by the total weight of the gravitons with negative
chirality. The quasichiral nature can be attributed to the dearth of
quasiholes of the chiral parent, which is 1=3 for the hierarchy
[62]. Similarly, in Jain’s CF approach, the spectrum is nearly
chiral if there is not any opposing flux (to the attached ones) from
the filled LLs.
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FIG. 5. The spectral function but for ν ¼ 1=4 composite Fermi
liquid for the modified Coulomb potential. Note that the low
energy spectrum has an equal weight for both chiralities with our
normalization. This means the contribution to s̄ is solely due to
the Haldane mode.
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hierarchy or involves filled LLs with no opposing flux in the
Jain’s construction as in 2=5 filling. Two well separated sectors
with negative chirality can be seen clearly. Here the size is too
small for us to get a meaningful s̄ and S4. However, the qualitative
feature of having two separated regions of nontrivial graviton
spectral density will persist for larger sizes.
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magnetic field, and the chirality of the high energy graviton
is universal for all Jain states near 1=4. The predictions are
confirmed in Figs. 4 and 6 [63].
Interestingly, the graviton spectral functions of Fermi-

liquid state ν ¼ 1=4 in Fig. 5 shows the high energy
graviton with expected chirality. From both the shift sum
rule and the spectral densities, we see that the Haldane
mode is universal for all FQH states near 1=4: it does not
care if there is a composite Fermi surface or if there is a
residue magnetic field. Figure 5 also shows the low-energy
excitations of both chirality with equal weight. As shown in
the Supplemental Material [51], the spectral densities of the
Fermi-liquid state ν ¼ 1=2 share the same feature with the
low energy spectral densities of ν ¼ 1=4 with I−ðωÞ and
IþðωÞ being similar, the only difference is the absence of
the Haldane mode.
Conclusion.—In this Letter, we compute numerically the

graviton spectral densities for the ν ¼ 2=7, 2=9, and 1=4
states. For the first two states, we observe in the spectral
densities two magnetoroton peaks, one at low energy with
chirality that depends on the residual magnetic field acting
on the CFs (and thus are opposite for the ν ¼ 2=7 and 2=9
states), and one at high energy with the same chirality for
the two states. The higher-energy magnetoroton is also
observed in a spectral density of the ν ¼ 1=4 state, and this
magnetoroton has approximately the same energy in all
three filling fractions. The result is consistent with the two-
magnetoroton model of FQH states near 1=4 proposed in
Ref. [43]. In addition, we have verified the FQH graviton
spectral sum rules for the two Jain states and the Fermi
liquid state ν ¼ 1=4.
We hope that our results will motivate the experimental

exploration of the magnetoroton spectrum of the FQH
states near ν ¼ 1=4, as well as more detailed study of the
Haldane mode which may reveal its nature. With the
guidance of the sum rules, one can use the numerical tool
developed in this Letter to investigate various FQH states,
both fermionic and bosonic.
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