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We report on the thermalization of light carrying orbital angular momentum in multimode optical fibers,
induced by nonlinear intermodal interactions. A generalized Rayleigh-Jeans distribution of asymptotic
mode composition is obtained, based on the conservation of the angular momentum. We confirm our
predictions by numerical simulations and experiments based on holographic mode decomposition of
multimode beams. Our work establishes new constraints for the achievement of spatial beam self-cleaning,
giving previously unforeseen insights into the underlying physical mechanisms.
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Statistical physics has been traditionally and successfully
employed to describe the average properties of a large
ensemble of particles, whose interactions are governed by
classical mechanics. This approach lies at the basis of
thermodynamics, whose laws determine the macroscopic
properties of matter, that evolve in a low-dimensional or
reduced phase space. Subsequently, the thermodynamic
approach has been extended to describe the statistical
evolution of a large number of classical electromagnetic
waves, analogously to bosonic systems, such as super-
conductors and superfluids [1–5]. Thermalization effects
have been explored in different photonic platforms, ranging
from disordered lattices to plasmonic systems [6–8].
Peculiar is the case of multimode optical fibers (MMFs),

which are an excellent test-bed for classical wave con-
densation phenomena. Indeed, Bose-Einstein condensation
of fiber modes has been demonstrated in graded-index
(GRIN) MMFs [9], and it can be theoretically described by
a model based on a weak wave turbulence approach [10].
Whereas a general model of thermalization of light in
multimode systems has been recently introduced, showing
that the average number of photons in each mode of the
fiber obeys a Rayleigh-Jeans (RJ) distribution [11,12].
Because of the role of high-order modes at the occurrence
of thermal equilibrium in MMFs, thermalization of a
multimode field is a more general situation than conden-
sation [12].
On the other hand, experimental observations have

revealed that, as the input power of a laser beam coupled
into a GRIN MMF grows above a certain threshold, the
intensity speckles generated by multimode interference
may spontaneously reorganize into a bell-shaped beam,
which approaches the fundamental mode of the fiber

[13,14]. This spatial self-organization effect is known as
beam self-cleaning (BSC) [15], and it has similarities with
wave condensation in hydrodynamic 2D turbulent systems
[16]. Since its first demonstration, BSC has been exten-
sively experimentally studied [16–23], in order to fully
clarify its physical mechanism. All of the studies reported
so far in the literature agree on the fact that modal four-
wave-mixing (FWM) interactions are crucial for activating
BSC. The fraction of energy in the fundamental mode has
been verified to obey the expected dependence on the initial
degree of spatial correlation [17], or on the internal energy
of the input beam with a fixed power value [9].
As a thermodynamic phenomenon, BSC can be seen as

the tendency of the optical beam to experience an irre-
versible evolution toward a state of thermal equilibrium,
which is established by conservation laws. Specifically,
the total number of photons, the total energy, and the
total momentum of motion must be simultaneously
conserved [9,12].
As a matter of fact, another quantity is conserved when a

beam of light propagates in waveguide systems: its total
orbital angular momentum (OAM). First introduced by
Allen et al. in 1992 [24], interest in OAM beams has
increased tremendously, thanks to their widespread poten-
tial for applications. These range from telecommunications
[25] to quantum optics [26], holography [27], astronomy
[28], and optical tweezers [29,30]. To date, BSC has only
been observed with laser beams that carry no OAM.
In this Letter, we extend current knowledge by describ-

ing, both theoretically and experimentally, the thermal-
ization of OAM-carrying multimode beams in nonlinear
optical fibers. We present a general theory of thermalization
of light in a MMF, which, at variance with previous
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literature [11,31], takes into account the conservation of
the OAM. This permits one to derive a generalized RJ
distribution for the relative occupation of the fiber modes,
which directly stems out of the conservation laws that rule
the FWM process in MMFs. Remarkably, our model shows
that BSC, as a result of beam thermalization, can only be
achieved by means of laser beams which do not carry
any OAM. Theoretical predictions are then compared to
numerical simulations, which turn out to be in excellent
agreement. Finally, we carried out an experimental char-
acterization of the thermal mode distribution at the fiber
output, based on a holographic mode decomposition (MD)
technique [32]. In our implementation, OAM is imparted
to an input Gaussian laser beam by means of properly
adjusting its coupling condition into the fiber [33].
In our theoretical model, we decompose the amplitude

(A) of a light pulse in a GRIN MMF in terms of the real
normalized radial OAM eigenfunctions Fl;m, so that

Aðt; z; r;ϕÞ ¼
X

k;l;m

Al;mðωk; zÞeiωkt−ipl;mðωkÞzþimϕFl;mðrÞ;

ð1Þ

and 2π
R
∞
0 rdr½Fl;mðrÞ�2 ¼ 1. Here, pl;mðωkÞ and

Al;mðωk; zÞ are the propagation constant and the slowly
varying amplitude of a mode with radial index l, azimuthal
index m, and frequency ωk ¼ ω0 þ 2πHk, where ω0 is the
carrier frequency and H is the pulse repetition rate. In the
Supplemental Material [34], we outline the transformation
from the conventional Laguerre-Gauss basis to the OAM
basis, and we show that the OAM modes are the well-
known vortex beams.
Although BSC is a purely spatial effect, its high thresh-

old powers have required the use of pulsed sources for its
observation. Moreover, it has been shown that BSC is
accompanied by significant temporal pulse reshaping [35],
which may be associated with a transfer of disorder
between spatial and temporal degrees of freedom [36].
For this reason, in our derivation, we keep explicit the
dependence of the light amplitude on frequency ωk.
Let us normalize jAðt; z; r;ϕÞj2 to the beam intensity, so

that for each mode ðl; mÞ and frequency component ωk we
may introduce the average powerWk;l;mðzÞ¼ jAl;mðωk;zÞj2,
the mode energy in a pulse Ek;l;mðzÞ ¼ Wk;l;mðzÞ=H, the
number of photons Nk;l;mðzÞ ¼ Ek;l;mðzÞ=ℏωk, the longi-
tudinal component of pulse momentum of motion
Pk;l;mðzÞ ¼ pl;mðωkÞNk;l;mðzÞ, and the OAM Mk;l;mðzÞ ¼
ℏmNk;l;mðzÞ. There are four conservation laws in the
FWM process. Specifically, the total energy of each pulse
E ¼ P

k;l;m Ek;l;mðzÞ ¼ const, the number of photons in
each pulse N ¼ P

k;l;m Nk;l;mðzÞ ¼ const, the longitudinal
component of the momentum of motion of a pulse P ¼P

k;l;m Pk;l;mðzÞ ¼ const, and the longitudinal component of
the pulse OAM M ¼ P

k;l;m Mk;l;mðzÞ ¼ const. All of the

conserved quantities (E,N,P, andM) are fully defined by the
injection conditions of the laser beam into the fiber whereas,
during propagation, FWM leads to energy exchange between
fiber modes, similarly to particle collisions in a gas, thus
shuffling the values of Nl;m;kðzÞ. One could expect then that
the photon system reaches thermodynamic equilibriumover a
finite time (i.e., a finite distance, say, z�), whenever each
elementary FWM process leading to energy transfer into
some modes is equally probable as its reverse process. In this
case, for z > z�, the statistics of an ideal photon gas is
described by the Boltzmann distribution.
At z > z�, this leads to a RJ distribution for the number

of photons Nk;l;m ¼ ðT=ℏω0
k;l;m − μÞ occupying the mode

ðk;l; mÞ in the coordinate system moving with the light
pulse at speed V, and rotating with its angular velocity Ω
[37]. Here, T is the statistical temperature of photons in a
light pulse (which is analogous to the temperature of
electrons in particle accelerator electron beams), μ is the
chemical potential, ω0

k;l;m ¼ γðωk − Vpl;m −ΩmÞ, γ ¼
1=ð1 − V2=c2Þ1=2 ≃ ffiffiffi

2
p

is a relativistic factor, and c is
the speed of light in vacuum. At thermal equilibrium, the
number of photons occupying mode ðl; mÞ with frequency
ωk in a laboratory reference system reads as

Nk;l;m ¼ T=
ffiffiffi
2

p

ℏωk −
μffiffi
2

p − ℏVpl;m − ℏΩm
; ð2Þ

which is a generalized form of the RJ distribution. It is
worth noting that Eq. (2) can be equivalently derived
starting from conservation laws, without recurring to the
change of coordinate system (see the Supplemental
Material [34]).
FWM scattering of waves must obey the conservation

laws of E, N,P, and M, which lead to the following
conditions:

ω1 þ ω2 ¼ ω3 þ ω4; ð3Þ

pl1;m1
ðω1Þ þ pl2;m2

ðω2Þ ¼ pl3;m3
ðω3Þ þ pl4;m4

ðω4Þ; ð4Þ

m1 þm2 ¼ m3 þm4; ð5Þ

where li,mi, and ωi with i ¼ 1, 2, 3, 4 characterize each of
the four waves. If any of Eqs. (3), (4), or (5) is not satisfied,
the scattering process is forbidden, the ergodicity hypoth-
esis fails, and the multimode optical system never reaches
its thermodynamic equilibrium.
Let us consider the FWM of narrow spectrum beams,

i.e., jωj − ω0j ≪ ω0. In this case, the mode propagation
constants may be expanded as pl;mðωjÞ¼pl;mðω0Þ þ
p0
l;mðωj−ω0Þþ0.5p00

l;mðωj−ω0Þ2. According to Eqs. (3)
and (4), FWM processes within a single transverse mode
have a mismatch δpl;m ¼ p00

l;mðω1 − ω3Þðω1 − ω4Þ. Now,
the efficiency of FWM is strongly suppressed for mismatch
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values larger than the inverse of the nonlinear length. As a
result, the nonlinear spectral broadening of a light beam is
restricted at long propagation distances [38]. When the
interaction of different transverse modes is involved, the
FWMmismatch may be equal to zero only occasionally, that
is, for just a few quartets of waves. As a result, thermalization
broadening of wave spectra fails to occur. Therefore, in the
following we shall limit our treatment to pulses with a
narrow spectrum (ωk ≃ ω). As a matter of fact, in our
experiments we use relative narrow-band picosecond pulses,
whose spectral broadening is negligible over distances as
long as z�, which turns out to be of a few meters.
In the special case of GRIN fibers, the mode propagation

constants are equidistant pl;m ¼ p0;0 − nð2π=LBÞ, where
n ¼ 2lþ jmj is dubbed the quantum number, whereas LB
is the self-imaging distance. The condition of Eqs. (4)
and (5) may be met for many quartets with n1 þ n2 ¼
n3 þ n4 and m1 þm2 ¼ m3 þm4 simultaneously. As a
result, the ergodicity hypothesis is verified, and the
equilibrium distribution [Eq. (2)] is achieved after a suitable
nonlinear length: it can be written as

Nl;m ¼ N0;0

1 − ð2πV=LBμ̃Þð2lþ jmjÞ þ ðΩ=μ̃Þm ; ð6Þ

where μ̃ ¼ μ=ℏ
ffiffiffi
2

p þ Vp0;0 − ω. Note that the average
power of transverse mode Wlm has the same distribution.
In the Supplemental Material [34], we show that the FWM
process in a multimode fiber can be described in the frame
of a kinetic equation approach [10], for which the dis-
tribution [Eq. (6)] is found to be a stationary solution.
Importantly, Eq. (6) shows that the equilibrium RJ

distribution is asymmetric with respect to m ¼ 0, owing
to the presence of the Lagrange’s multiplier Ω, which
is associated to the conservation of the total OAM [see
Fig. 1(b), where Ω > 0]. Specifically, the frequencies
ð2πV=LBÞ and Ω must be comparable, in order to signifi-
cantly modify the symmetry of the RJ distribution around
m ¼ 0, whereas, if Ω ¼ 0, i.e., if the theory does not
impose the conservation of the longitudinal OAM, then
one recovers the conventional symmetric RJ distribution
[12,23] [as in Fig. 1(a)]. Starting from this consideration,
one can associate the presence of an OAM with the
asymmetry of the mode distribution, i.e., with a nonzero
value of the average azimuthal index hmi ∝ Ω, where

hmi ¼
X

l;m

mWl;m: ð7Þ

The symmetry breaking of the equilibrium distribution
with respect to m ¼ 0 means that, whenever thermalization
without condensation (μ̃ ≠ 0, i.e., when all the modes but the
fundamental have Nl;m ¼ 0) occurs, a bell-shaped output
beam profile cannot be obtained, unless hmi ¼ Ω ¼ 0, in
spite of the fact that the fundamental mode is always the
dominant mode in the output thermal distribution.
Experimentally, this means that, in order to achieve BSC,
one always needs to inject a laser beamwhich does not carry
OAM, e.g., on axis Gaussian beams, coupled at the center of
the fiber core. It is worth pointing out that BSC was earlier
demonstrated by using different input laser coupling con-
figurations. This is the case of Ref. [9], where a diffuser
changes the spatial distribution of the input beam, and of
Ref. [21], where fiber was tilted with respect to the laser
direction. However, in both of these cases no OAM was
carried by the input beam.
In order to seed an OAM, we chose a peculiar input

beam, i.e., a Gaussian beam which is injected with a tilt
angle ϑ and a transverse offset y0 with respect to the fiber
axis [see Figs. 2(a) and 2(b)]. Such injection condition
leads to helical propagation of the laser beam inside the
fiber core [33,39]: its trajectory can be visualized by the
naked eye by exploiting the luminescence of fiber defects
[40]. The helical trajectory carries a longitudinal OAM,
which can be calculated as

hmithe ¼ 2π
y0 sinϑ

λ
: ð8Þ

(a) (b)

FIG. 1. Equilibrium distribution for Ω=μ̃ ¼ 0 (a) and Ω=μ̃ ¼
−0.65 (b). In both plots, N0;0 ¼ 1 and 2πV=LBμ̃ ¼ 1.

(a)

(c) (d)

(e) (f)

(b)

FIG. 2. (a),(b) Sketch of front and side views of injection
conditions and helical propagation carrying positive OAM.
(c) Input mode distribution. (d) Mode grouping by index g.
(e) Numerically simulated output mode distribution when
Wp ¼ 30 kW. Cyan dots in the 2D plot represent the values
of mode power fraction, obtained by fitting experimental data
with Eq. (6). (f) Same as (e) when Wp ¼ 0.1 kW. Images in the
inset of (e) and (f) represent output intensity profiles of the beams.
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Interestingly, the magnitude of the input OAM can be tuned
by acting on the injection offset. Specifically, the input
OAM grows larger with y0, and its sign can be flipped by
injecting the laser at diametrically opposite points, thus
reversing the helix chirality [33]. Equation (8) was used
to verify the validity of our mode truncation (see the
Supplemental Material [34]).
In Fig. 2(c) we show the mode distribution at the input of

the fiber, corresponding to the injection condition ϑ ¼ 2°
and y0 ¼ −3 μm. By applying Eq. (7), this corresponds to
hmi ¼ 0.75 while hni ¼ P

l;mð2lþ jmjÞWl;m ¼ 2.23.
In Fig. 2(d) we display a convenient way for grouping

the OAM modes, which will be used in the remainder of
this Letter. In this way, we can emphasize the difference
between groups of modes, represented by number g: they
share the same quantum number n, but have different signs
of m. Specifically, modes with odd n are grouped in three
blocks, one for m < 0, one for m > 0, and one of m ¼ 0.
On the other hand, modes with even n miss the value
m ¼ 0, so they are grouped in two blocks only, one for
m < 0 and one for m > 0.
In order to verify the validity of our theoretical pre-

dictions, we performed numerical simulations. Besides
FWM, we also considered the effects of linear random
mode coupling [41]. Further details about the numerical
model are reported in the Supplemental Material [34]. We
limited our simulation to include the 78 modes with
the highest values of momentum, i.e., we only considered
GRIN fiber modes with n < 12.
We ran simulations for different values of the input

peak power (Wp), in order to compare quasilinear with
highly nonlinear propagation regimes. In the latter
(Wp ¼ 30 kW), the mode distribution at the output of
the fiber [shown in Fig. 2(e)] turns out to be in excellent
agreement with the generalized RJ distribution [Eq. (6)].
For a clearer comparison, we report in Fig. 2(e) the
experimental (histogram) and fitting (cyan dots) values
of the mode power fraction, whereas in the linear regime
(i.e., for Wp ¼ 0.1 kW), the lack of significant FWM
interactions prevents mode thermalization: as a result, a
fit with Eq. (6) fails [see Fig. 2(f)]. Details on simulation
parameters are given in the Supplemental Material [34].
The validity of theory and numerics was verified by

experiments based on the MD of OAM beams at the output
of GRIN MMFs. The MD was performed by following the
method described in Ref. [32]. We used 1 ps laser pulses at
1030 nm, and a 2 m long 50=125 GRIN MMF. A full
description of the setup is reported in the Supplemental
Material [34]. Here, we studied light thermalization, which
is obtained by increasing the input pulse peak power, with
two different injection conditions. Specifically, in Fig. 3,
we report a MD analysis of the beam output profile for
input beams carrying either positive [Figs. 3(a)–3(c)] or
negative [Figs. 3(d)–3(f)] OAM. This was obtained by
setting y ¼ þ2 μm or y ¼ −1 μm, respectively. In the

Supplemental Material [34], we also report the limit case
of hmi ¼ 0, which is achieved by injecting the laser with no
offset with respect to the fiber axis, whereas in the
Supplemental Material [34] we provide more details on
the evolution of mode occupancy toward thermalization, as
the input beam power grows larger.
In Figs. 3(a) and 3(d), we report histograms of the mode

power fraction of the output beams, for several values ofWp.
As can be seen, the mode content changes when increasing
Wp, eventually approaching an equilibrium distribution once
overcoming the threshold for thermalization. One can
appreciate that the distributions at Wp ¼ 17.6 kW and
Wp ¼ 26.5 kW are quite similar, whereas at lower powers,
significantly different output mode contents are observed. In
the inset of Figs. 3(a) and 3(d), we compare the measured
output near field intensities (images in the left column)
with the MD reconstructions (images in the right column).
These images are impressively similar for all input power
values, thus proving the accuracy of our MD method.
The cyan dots shown in the graphs of Figs. 3(a) and 3(d)

for the highest input power values provide the fitting of the
experimental mode occupancy with Eq. (6). As can be seen,
a good agreement is found between the experimental mode
power fractions and the prediction of the generalized RJ
distribution. In Figs. 3(b) and 3(e), we show that the root-
mean-square error of the observed mode occupancy with
respect to the equilibrium distribution is progressively
reduced, when increasing Wp. This indicates that when

(a) (d)

(b) (e)

(c) (f)

FIG. 3. Experimental results. (a) MD of the output beam for
two different values of Wp, when y0 ¼ þ2 μm. Inset: the
measured output beam profiles (left) and their reconstructions
(right). The blue dots are extracted by fitting experimental data
with Eq. (6). (b) Root-mean-square error of the experimental
mode distributions with respect to the generalized RJ distribution
of Eq. (6) [cyan dots in (a)] vs input peak power. (c) Conservation
of hni (blue) and hmi (red). The error bars are estimated by
considering all of the reconstructions of the output beam near
field at each input power [12]. (d)–(f) Same as (a)–(c), when
injecting the laser beam with an offset y0 ¼ −1 μm.
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enough power is provided, the FWM processes allow for
reaching the ergodicity condition for the multimode sys-
tem, hence its thermalization into an equilibrium distribu-
tion; see Eq. (6).
Finally, we proved the validity of the hypothesis behind

our theoretical derivation, i.e., the conservation laws of E,
N, P, andM. As a matter of fact, our MD method does not
allow for estimating Nl;m, since only averaged quantities
can be extracted from camera pictures. Nevertheless, it is
well known that the energy of each pulse E, and accord-
ingly the photon number N, are conserved in our exper-
imental conditions, since dissipative effects, of either linear
or nonlinear origin, are negligible over a few meters of fiber
for picosecond pulses of few tens of kW of peak power, at
wavelengths around 1 μm. We experimentally verified the
conservation of hni and hmi, which are related to the linear
and angular momentum, respectively. As can be seen in
Figs. 3(c) and 3(f), when varying Wp, both quantities
oscillate within the experimental error bars around a
constant value. Specifically, we found that hmi ≃ 0.46
for y0 ¼ þ2 μm and hmi ≃ −0.24 for y0 ¼ −1 μm.
This is in agreement with theoretical expectations:
Eq. (8) gives hmi ¼ 0.44 and hmi ¼ −0.22, respectively.
We underline that increasing the fiber length or Wp is
roughly equivalent, as far as nonlinear mode coupling in
MMF is concerned [15,42]. Thus, the conservation of hni
and hmi with Wp also proves their conservation along the
beam propagation distance.
In conclusion, we derived a general theoretical descrip-

tion of light thermalization in MMFs. Theoretical predic-
tions have been confirmed by numerical and experimental
studies. Remarkably, we found that the thermalization
of OAM beams in GRIN MMFs may occur without the
generation of bell-shaped output beams. Our work sheds
new light on the nonlinear dynamics and manipulation of
vortex optical beams by MMFs, which will have an echo in
other areas of optics, e.g., for OAM-based optical trapping,
and OAM-division-multiplexed telecommunications. After
the submission of our manuscript, a theoretical study of
OAM beam thermalization in multimode waveguides has
been independently reported in Ref. [43].
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