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We develop a novel approach aimed at solving the equations of motion of open quantum many-body
systems. It is based on a combination of generalized wave function trajectories and matrix product states.
We introduce an adaptive quantum stochastic propagator, which minimizes the expected entanglement in
the many-body quantum state, thus minimizing the computational cost of the matrix product state
representation of each trajectory. We illustrate this approach on the example of a one-dimensional open
Brownian circuit. We show that this model displays an entanglement phase transition between area and
volume law when changing between different propagators and that our method autonomously finds an
efficiently representable area law unraveling.
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Classical simulation of the evolution of quantum many-
body systems is a formidably hard task, in particular if the
system is fully coherent [1]. Most near-term intermediate
scale quantum devices are, however, noisy, which opens a
possibility for the existence of efficient classical algorithms
for simulating the corresponding open system dynamics.
Nonetheless it is often unclear how to best exploit this
potential.
Here we address this challenge by developing an algo-

rithm that explicitly harnesses the quantum noise inherent to
an open quantum system tominimize the computational cost
of representing the many-body state. Our approach is based
on a combination of matrix product states (MPSs) [2–4] and
a generalization of the quantum trajectory (QT) method [5–
10]. The latter identifies the dynamics of an open quantum
system as a stochastic evolution of pure quantum states,
corresponding to a continuous measurement of the envi-
ronment [11]. Importantly, the choice of the monitored
environment observables results in qualitatively different
ensembles of QTs. Our method utilizes this flexibility and
continuously optimizes the monitored environment observ-
ables by predicting and minimizing the expected entangle-
ment in the trajectory wave function (Fig. 1), thus
minimizing the computational cost of MPS representations.
We illustrate our approach by applying it to solve the

Markovian master equation (ME) of an open Brownian
circuit, where the coherent part of the evolution rapidly
generates entanglement, while the dissipative part leads to
dephasing. We show that various types of QT methods lead
to ensembles that differ dramatically in their entanglement
properties. This includes a phase transition between area
law and volume law entangled ensembles, depending on
the monitored environment observables. In addition to
being an interesting phenomenon per se, with connec-
tions to recently discussed measurement-induced phase

transitions [12–23], it provides an ideal test bed for our
algorithm: We show that our entanglement predictor allows
one to generate ensembles of QTs that keep the system in
the area-law phase at all times.
We are interested in open quantum many-body systems

with n constituents andm dissipative channels described by
a ME of a generic Lindblad form (ℏ ¼ 1) [24]:

dρ
dt

¼ −i½Hsys; ρ� þ
Xm
j¼1

γj

�
cjρc

†
j −

1

2
fρ; c†jcjg

�
: ð1Þ

Here, ρ is the (many-body) density operator of the quantum
system, Hsys is the (so far unspecified, potentially time-
dependent) system Hamiltonian, and the cj’s are the jump
operators corresponding to the jth decay channel with

FIG. 1. (a) Schematic setting of a continuously monitored
quantum many-body system with adaptive measurements.
(b) Propagation of a state from time t into the future with two
options for the stochastic propagator (color coded, gray vs green).
The colored dashed lines are potential QTs for a given unraveling,
and their stochastic averages are shown as solid lines. A QT
(black) is generated randomly at each time step, corresponding to
the stochastic propagator that gives the lowest expected entan-
glement (green).
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associated decay rate γj. In the following it is convenient to
assume that Hsys is short-range interacting and the jump
operators are local. Such a ME describes the reduced
dynamics of a system coupled to an environment (or bath).
The underlying joint evolution of system and environment
is unitary and is described by the Schrödinger equation
i∂tjΨðtÞi ¼ HðtÞjΨðtÞi, where jΨðtÞi represents the joint
state of the system and environment, and the Hamiltonian is
given by [11]

HðtÞ ¼ Hsys þ i
Xm
j¼1

ffiffiffiffi
γj

p ½bjðtÞ†cj − c†jbjðtÞ�: ð2Þ

Here, bjðtÞ’s are so-called quantum noise operators with
bosonic statistics ½bjðtÞ; bj0 ðt0Þ†� ¼ δj;j0δðt − t0Þ. Those
operators act on the degrees of freedom of the environment,
which are initially in the vacuum state: bjðtÞjΨð0Þi ¼ 0.
The ME [Eq. (1)] is obtained from the full Schrödinger
equation by tracing out these bosonic degrees of
freedom [11].
The QT method solves the ME [Eq. (1)] by simulating a

continuous monitoring of the environmental degrees of
freedom in Eq. (2). It stochastically generates an ensemble
of pure states of the system, called quantum trajectories,
from which the density matrix dynamics can be retrieved as
a statistical average:

ρðtÞ ¼ lim
N→∞

1

N

XN
k¼1

jϕðkÞðtÞihϕðkÞðtÞj: ð3Þ

Here the quantum trajectories jϕðkÞðtÞi represent the condi-
tional state of the system for a particular (simulated)
measurement history of the monitored environment (enu-
merated by k). They satisfy a stochastic equation of motion,
i.e., a quantum stochastic Schrödinger equation (QSSE)
[11]. The form of the QSSE depends on the environ-
ment monitoring schemes, in particular on the monitored
observables. For instance, the standard QT method, known
as quantum jump approach, is obtained by continuous
monitoring of the photon numbers b†jðtÞbjðtÞ [5–7,9].
Another approach is based on the balanced homodyne
measurement, where a phase-sensitive homodyne current
bjðtÞeiφj þ b†jðtÞe−iφj is continuously measured [8]. Here,
the φj specifies the measured quadrature.
A QT is generated by integrating the QSSE in (small)

time steps, dt. In practice, one Trotterizes the correspond-
ing propagator into a stochastic and a deterministic part.
The stochastic component can be further split into inde-
pendent components corresponding to m decay channels
[25]. Specifically, a single integration step jϕðkÞðtÞi →
jϕðkÞðtþ dtÞi is achieved by a sequential application of
stochastic operators Kj for each decay channel j: Starting

from the state jϕðkÞ
1 ðtÞi ¼ jϕðkÞðtÞi, one generates the

sequence of normalized states

jϕðkÞ
jþ1ðtÞi ∝ KjjϕðkÞ

j ðtÞi; ðj ¼ 1;…; mÞ ð4Þ

and then concludes the integration step with the unitary
operation jϕðkÞðtþ dtÞi ¼ e−iHsysdtjϕðkÞ

mþ1ðtÞi. The form of
the stochastic operator Kj depends on the type of (simu-
lated) environment measurement. For example, the oper-
ator simulating a homodyne measurement of the output
field in channel j is

Khom
j ¼ e−γjdtc

†
j cj=2 þ ffiffiffiffi

γj
p

cjeiφjdξjðtÞ; ð5Þ

where dξjðtÞ ¼ ffiffiffiffi
γj

p hϕðkÞ
j ðtÞjcjeiφj þ c†je

−iφj jϕðkÞ
j ðtÞidtþ

dWjðtÞ and the dWjðtÞ’s are independent, normally dis-
tributed Gaussian variables with zero mean and variance dt,
also known as Wiener increments. For a simulated number
measurement, the propagator is probabilistically selected
from the two options:

Knum
j ¼

� ffiffiffiffiffiffiffiffi
γjdt

p
cj with probabilitypj;

e−γjdtc
†
j cj=2 with probability 1 − pj;

ð6Þ

where pj ¼ γjdthϕðkÞ
j ðtÞjc†jcjjϕðkÞ

j ðtÞi corresponds to the
probability of measuring a photon in channel j between t
and tþ dt.
While these two schemes are by far the most common

ones, we stress that a multitude of stochastic propagators
can be constructed by choosing different measurements of
the bath operators specified via the eigenbases of arbi-
trary Hermitian functions of the bath operators, XjðtÞ ¼
f½bjðtÞ; b†jðtÞ�. This also includes measurement strategies
that change with time and depend on prior measurement
outcomes [26,27]. Importantly, the stochastic averages over
linear functionals of the state projectors ϕðkÞ ¼ jϕðkÞihϕðkÞj
do not depend on how the environment is monitored. This
includes in particular the density operator [Eq. (3)] and the
expectation values of linear observables. However the
ensemble of QTs itself, as well as nonlinear functionals
of the trajectories, does depend on the unraveling. In
particular this holds for the entanglement entropy (EE),
which is of central interest in our work. We consider the EE
between two partitions of the many-body system, A ∪ B. In
this case the EE of a single QT jϕðkÞi is defined as the
von Neumann entropy of the reduced state of one of the
subsystems fρðkÞA ¼ trB½ϕðkÞ�g:

E½ϕðkÞ� ¼ S½ρðkÞA � ¼ −tr½ρðkÞA log2 ρ
ðkÞ
A �: ð7Þ

The ensemble averaged EE (EAEE) is then defined as

Ē ¼ lim
N→∞

1

N

XN
k¼1

E½ϕðkÞ�: ð8Þ

It is bounded from below by the entanglement of formation
[28] of the density operator EfðρÞ and from above by the
entropies of ρA ¼ trBðρÞ and ρB ¼ trAðρÞ:
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EfðρÞ ≤ Ē ≤ min ½SðρAÞ; SðρBÞ�: ð9Þ
The dependence of the EAEE on the unraveling becomes

especially important when the QT method is combined
with MPS techniques to represent and propagate the
(stochastic) wave function of the quantum many-body
system. MPS representations are efficient as long as the
bond dimension χ, and thus the entanglement, is small.
Since the computational cost of a MPS simulation grows
exponentially with the entanglement, choosing the unrav-
eling that minimizes the EAEE is of paramount importance.
A priori it is unclear which stochastic propagation scheme
leads to small values of the EAEE, without constructing the
trajectories [29]. We can however predict how various types
of the stochastic propagators affect the change rate of the
EAEE at each instant of time and accordingly optimize it.
This motivates a time-local greedy algorithm that contin-
uously adapts the stochastic propagators to the conditional
wave function as time progresses [Fig. 1(a)].
More specifically, given the pure state of the system

jϕðkÞðtÞi of the kth trajectory at time t, we want to choose
the stochastic propagator that minimizes the expected

instantaneous entanglement increase rate, _̄E ¼ dĒ=dt
[see Fig. 1(b)]. For simplicity we consider only propagators
corresponding to independent measurements of each bath
channel j and jump operators that do not couple the
partitions A and B. As outlined above, the stochastic
components of the propagator can then be applied in
sequences. This allows one to optimize the corresponding

change rate of the EAEE, _̄Ej, channel by channel.
Remarkably, one can analytically perform the minimization

minXjðtÞð _̄EjÞ over all stochastic propagators that correspond
to measurements in eigenbases of arbitrary bath observ-
ables XjðtÞ ¼ f½bjðtÞ; b†jðtÞ�. Moreover, the minimum is
always obtained either for a number measurement,
XjðtÞ ¼ b†jðtÞbjðtÞ, or for a homodyne measurement,

XjðtÞ ¼ bjðtÞeiφj þ b†jðtÞe−iφj . For the number measure-
ment the EAEE change rate at channel j is

_̄E
num
j ¼ trðcjϕc†jÞ log2 ½trðcjϕc†jÞ�

þ trðtrBðcjϕc†jÞflog2 ½trBðϕÞ�− log2 ½trBðcjϕc†jÞ�gÞ:
ð10Þ

The measurement of the homodyne current gives instead

_̄E
hom
j ¼ 1

2 ln 2

�
je−iφj trðcjϕÞ þ eiφj trðϕc†jÞj2

−
X
k;l

lnðξkÞ − lnðξlÞ
ξk − ξl

je−iφjhξkjtrBðcjϕÞjξli

þ eiφjhξkjtrBðϕc†jÞjξlij2
�
: ð11Þ

Here ϕ¼jϕðkÞ
j ðtÞihϕðkÞ

j ðtÞj [see Eq. (4)] and trBðϕÞjξli ¼
ξljξli. We refer the reader to the Supplemental Material,

Sec. III [26], for the proof and derivation of the above
statements.
This motivates the following entanglement-optimized

quantum trajectory (EOQT) algorithm [see Fig. 2(a)]. For
each discrete time step dt propagate the state jϕðkÞðtÞi →
jϕðkÞðtþ dtÞi as follows: (1) Sequentially for each channel

j calculate the EAEE change rates minφj

_̄E
hom
j and _̄E

num
j and

update the state according to the correspondingly optimal
stochastic propagator; (2) Complete the update of the
resulting state by applying the coherent propagator e−iHsysdt.
This EOQT algorithm can be naturally combined with

MPS methods, such as the time evolving block decimation
(TEBD) algorithm [30,31] [see Fig. 2(a)]. Importantly, the
computational cost of the evaluation and optimization of
Eqs. (10) and (11) for a MPS with bond dimension χ is
Oðχ3dÞ, where d is the local Hilbert space dimension. This
should be compared with the cost of the coherent propa-
gation, which for each of the time steps dt is Oðχ3d3nÞ.
Thus the EAEE optimization does not significantly add to
the cost of the standard propagation. On the other hand, the
potential gain in the simulation efficiency can be substan-
tial, as we show in the remainder of this Letter.
The simplest example illustrating the dependence of Ē

on the unraveling is obtained by considering two qubits
initially in a Bell state, ðj00i þ j11iÞ= ffiffiffi

2
p

, that are undriven
(Hsys ¼ 0) and coupled to a bath with a jump operator cj ¼
j1ijh1j and strength γj ¼ γ (j ¼ 1; 2). In this case, Ē can be
analytically calculated for different unravelings. For the
photon number measurements, one obtains Ēnum ¼ σð2γtÞ,
where we introduced the function

σðsÞ ¼ 1

2 ln 2
½ð1þ e−sÞ ln ð1þ e−sÞ þ se−s�: ð12Þ

FIG. 2. (a) Schematic illustration of the EOQT-MPS algorithm.
To propagate a state from t to tþ dt we first apply a “stochastic
layer”: We calculate the unraveling that minimizes the expected
EE in the next time step and apply the corresponding stochastic
propagator. This procedure is implemented sequentially for all
jump operators. Then we implement a “deterministic layer,”
propagating the system with Hsys via standard methods such as
TEBD. (b) Time dependence of the excess EAEE, Ē − Ef , of a
continuously monitored Bell pair for the number measurement
(blue), the homodyne unraveling with φj ¼ 0 (red), and the
EOQT (green, number of trajectories N ¼ 104). Inset: The
statistics of measurement choices of the EOQT algorithm.
The error bars are denoted by gray filling.
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The expression for homodyne measurement is

ĒhomðτÞ ¼ 1

2
ffiffiffiffiffiffiffiffi
2πτ

p
Z

dsσðsÞe−ðs−2τÞ2
8τ ð13Þ

with τ ¼ γtðcos2 φ1 þ cos2 φ2Þ. In Fig. 2 we compare
the excess entanglements Ē − Ef for number, homodyne,
and optimal (EOQT) measurements. In this case Ef

evaluates to EfðtÞ ¼ −rþ log2ðrþÞ − r− log2ðr−Þ, where

r� ¼ ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2γt

p
Þ=2 [28]. We note that for short times

the homodyne unraveling with φj ¼ 0 (j ¼ 1; 2) saturates
this bound, while for longer times the number unraveling
approaches Ef faster [Fig. 2(b)]. The optimized algorithm
indeed finds unravelings resulting in an EAEE that is
always close to the theoretical minimum Ef. As visible in
the inset of Fig. 2(b), the optimizer chooses mostly the
homodyne propagator with φj ¼ 0 for early times and
switches over to predominantly choosing the number pro-
pagators around γt ≈ 1.
To demonstrate the potential of our approach in a many-

body setting, we consider a one-dimensional open random
Brownian circuit (RBC) for a chain of spin-1=2 particles.
We choose this example since the evolution under the RBC
leads to rapid EE growth. The coherent part of the evolution
is given by the time-dependent RBC Hamiltonian:

HsysðtÞ ¼
Xn−1
j¼1

X3
k;l¼0

gk;lj ðtÞσkj ⊗ σljþ1: ð14Þ

Here n is the number of spins and σkj ∈ f1j; σxj ; σyj ; σzjg are
standard Pauli operators acting on spin j. The parameters
gk;lj ðtÞ are Gaussian stochastic variables with ⟪gk;lj ðtÞ⟫ ¼ 0

and ⟪gk;lj ðtÞgk0;l0j0 ðt0Þ⟫ ¼ αδj;j0δk;k0δl;l0δðt − t0Þ, where
⟪ � � �⟫ denotes the average over Hamiltonian realizations
and α is the variance of RBC. The incoherent part is given
by the jump operators cj ¼ σzj with uniform decay strength
(measurement rate), γj ¼ γ.
For sufficiently strong γ this model exhibits a type of

measurement-induced phase transition that is solely driven
by the type of unraveling (see Fig. 3). Depending on the
bath measurement operators, the character of EAEE
changes from area law to volume law. That is, even
though all types of bath measurements solve in the end
the same ME [Eq. (1)], some unravelings lead to
ensembles with area law EAEE that can be efficiently
computed on classical computers, while other unravelings
fail to do so.
This change from volume to area law can be shown

explicitly by considering the stochastic propagator for a
homodyne unraveling Kj, defined above [see Eq. (5)].
Since σzj

†σzj ¼ σzj
2 ¼ 1, it takes the form

Kj ∝ exp feiφj
ffiffiffi
γ

p
σzjdξjðtÞg; ð15Þ

where dξjðtÞ ¼ 2
ffiffiffi
γ

p hσzjiðtÞ cosφjdtþ dWjðtÞ (see Sec. VI
of the Supplementary Material [26] for more details). It has
a unitary part, exp fi sinðφjÞ ffiffiffi

γ
p

σzjdξjðtÞg, and a nonunitary
part, exp fcosðφjÞ ffiffiffi

γ
p

σzjdξjðtÞg. The unitary component
can be absorbed into the coherent part of the evolution,
as it leaves the ensemble of RBCs invariant. The nonunitary
component can be reinterpreted as a stochastic propagator
of a Markov process with an effective decoherence rate
γeffj ¼ γ cos2 φj. Changing the unraveling at fixed γ by
changing φj is thus equivalent to changing γ for a fixed
unraveling. This equivalence is remarkable, as these two
interpretations describe two profoundly different physical
scenarios: The first refers to various representations of the
solution of a single ME, while the second refers to
particular solutions of various MEs. The latter has been
studied extensively recently [12–23], and it is known that
the conditional states can undergo a so-called measure-
ment-induced phase transition from area-law to volume-
law entanglement, depending on the coupling strength to
the environment. In our case, this phase transition occurs as
a function of the unraveling, e.g., parametrized by φj.
Indeed, for φj ¼ π=2 the QTs map to fully coherent RBC
evolution, which generates entanglement that obeys a
volume law. In the other limiting case, φj ¼ 0 (and
sufficiently large γ), the measurement backaction contin-
uously leads to an effective projection onto product states,
resulting in entanglement within the system that satisfies an
area law. These two phases are separated by a critical point
at γ cos2 φj ¼ γcrit. Thus, when γ > γcrit, the many-body

FIG. 3. EAEE for the open RBC. (a) EAEE profile in the long
time limit for various unravelings. Solid lines denote homodyne
unravelings with changing phase from φj ¼ 0 (red) to φj ¼ π=2
(gray) in increments of π=20, and dashed blue and green lines
correspond to the number and EOQT measurements. Insets: Time
evolution of EAEE for various unravelings and measurement
choices of the EOQT. Here m ¼ n ¼ 16, χ ¼ 128. (b) Half-chain
EAEE for larger systems (with χ ¼ 512). Depending on the
homodyne phase, the ensembles display an area law at small φj

and a volume law at φj ≈ π=2. The EOQT method results in an
area-law EAEE close to the homodyne unraveling with φj ¼ 0,
whereas the number unraveling leads to an area law with larger
EAEE. The phase diagram is shown in the inset. For all data in
this figure we used α=γ ¼ 0.1 (α ¼ 1) and N ¼ 200. The
statistical error bars lie within the lines’ thickness.
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ME can be efficiently solved using MPS via QTs if an
efficient unraveling is chosen. In Fig. 3 we show results of
MPS simulations of various unravelings of the open RBC
demonstrating that the EOQT method indeed finds effi-
ciently computable unraveling.
In summary, we introduced a novel QT method to

simulate the time evolution of a noisy quantum many-
body system and showed that our method can enable
an efficient classical simulation, where standard QT
methods may fail. While in this Letter we focused on
monitoring and optimizing each output channel sepa-
rately, more general schemes, based on collective mon-
itoring and optimization, can be developed [32]. Detailed
performance comparisons with other techniques for
open quantum many-body systems [33–44] are left for
future work.
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