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While first order perturbation theory is routinely used in quantum Monte Carlo (QMC) calculations,
higher-order terms present significant numerical challenges. We present a new approach for computing
perturbative corrections in projection QMC calculations. We demonstrate the method by computing nuclear
ground state energies up to second order for a realistic chiral interaction. We calculate the binding energies
of several light nuclei up to 16O by expanding the Hamiltonian around the Wigner SU(4) limit and find good
agreement with data. In contrast to the natural ordering of the perturbative series, we find remarkably large
second-order energy corrections. This occurs because the perturbing interactions break the symmetries of
the unperturbed Hamiltonian. Our method is free from the sign problem and can be applied to QMC
calculations for many-body systems in nuclear physics, condensed matter physics, ultracold atoms, and
quantum chemistry.
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Quantum Monte Carlo (QMC) simulation is a powerful
method for addressing quantum many-body problems in
nuclear physics [1–4], condensed matter [5–7], ultracold
atoms [8–10], and quantum chemistry [11,12]. Perhaps the
most important feature of QMC is that when the MC
process has only positive weights, the computational effort
scales only polynomially with system size. Unfortunately,
this is not true in general. If the Monte Carlo process
involves cancellations between positive and negative
weights, the resulting “sign problem” leads to exponential
scaling of the computational effort with system size.
Although finding a generic solution for the sign problem
is unlikely in the near term [13], for several important cases
QMC algorithms can be applied without sign problems,
such as lattice QCD at zero baryon density [14], the
repulsive Fermi-Hubbard model at half filling [15], and
low-energy nuclear systems in the Wigner SU(4) limit [16–
19]. The realistic systems of physical interests, though,
often deviate from these ideal models significantly and
have a sign problem. In these cases, perturbation theory can
be used to bridge the difference between the simplified and
the realistic interaction. However, so far, perturbation
theory in QMC is mostly limited to the first order.
Improving the quality of the perturbative calculations
requires going to higher orders.

In Rayleigh-Schrödinger perturbation theory, the second-
order energy correction involves a summation over all
quantum states that can be reached via the perturbing
interaction. Such a calculation over all quantum states is
not compatible with QMC, which targets only the lowest
energy states. To solve this problem, we introduce a
computational framework called perturbative QMC
(ptQMC), which allows for the efficient calculation of
higher-order perturbative corrections within the Euclidean
time formalism. As a demonstration, we implement this
method using nuclear lattice effective field theory (NLEFT)
[3,4] and perform benchmark calculations of the binding
energies of several nuclei.
NLEFT is a QMC method for nuclear ab initio calcu-

lations. We regularize the chiral nuclear force on a periodic
cubic lattice and employ the auxiliary field MC method to
simulate finite nuclei. The advantage of this approach is
that many-body correlation effects such as clustering
emerge automatically [20,21]. Because of the sign problem,
early NLEFT calculations were limited to a few nuclei and
specially designed interactions [22–27]. In most of the
recent NLEFT calculations, the higher-order chiral inter-
actions are included with first-order perturbation theory
[28–32].
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The nuclear Hamiltonian is H ¼ K þ V0 þ VC, where
K ¼ −∇2=2m is the kinetic energy operator and m ¼
938.92 MeV is the nucleon mass. We use a lattice spacing
of a ¼ 1.32 fm. The interaction is split into a dominant
term V0 and a correction VC. The ground state of H can be
found by applying imaginary time projectors to a trial wave
function jΨTi, jΨi ¼ limLt→∞MLt=2jΨTi, with M ¼
∶e−atH∶ the transfer matrix and at the temporal step.
The colons denote normal ordering. Without loss of
generality, we assume that both V0 and VC can be
decomposed in terms of auxiliary fields. For example,
using a simple contact interaction for V0,

∶e−1
2
atC0ρðnÞ2∶ ∝

Z
Ds∶e−

sðnÞ2
2

þ ffiffiffiffiffiffiffiffiffi
−atC0

p
sðnÞρðnÞ∶; ð1Þ

with ρðnÞ as the nucleon density and sðnÞ as a real auxiliary
field. We further require that V0 does not induce a sign
problem. This is possible when V0 is attractive with
C0 < 0, and each spin-up nucleon in jΨTi is paired with
a spin-down nucleon [33]. This is the case for the ground
states of even-even nuclei. However, we can use a more
general VC that may have a sign problem. By decomposing
VC in the same manner, we have similar expressions for the
density ρc and the corresponding auxiliary field c. For
nonperturbative QMC calculations, we need to sample both
s and c fields.
Under the assumption that VC is small compared to V0,

we can expand jΨi in powers of VC,

jΨi ¼ lim
Lt→∞

MLt=2jΨTi ¼ jΨ0i þ jδΨ1i þOðV2
CÞ; ð2Þ

jΨ0i ¼ lim
Lt→∞

MLt=2
0 jΨTi; ð3Þ

jδΨ1i ¼ lim
Lt→∞

XLt=2

k¼1

MLt=2−k
0 ðM −M0ÞMk−1

0 jΨTi; ð4Þ

where M0≕ e−atðKþV0Þ∶ is the zeroth-order transfer matrix
and we have omitted the Oða2t Þ terms. In Eq. (2) and what
follows, we use the subscripts to denote the perturbative
orders and the symbols with δ to represent the corrections.
The normalized wave function is

jΨ0i ¼ jΨiffiffiffiffiffiffiffiffiffiffiffiffiffihΨjΨip ¼ jΨ0iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihΨ0jΨ0i
p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihΨ0jΨ0i

p

×

�
jδΨ1i −

RehΨ0jδΨ1i
hΨ0jΨ0i

jΨ0i
�
þOðV2

CÞ; ð5Þ

where Re denotes the real part. Equation (5) can be used to
calculate the expectation value of any operator up to
OðVCÞ. A special case is the energy, for which δE1 only
depends on jΨ0i. With jδΨ1i at hand, we can continue

further to find δE2. The partial energy contributions at each
order are

E0 ¼ hΨ0jðK þ V0ÞjΨ0i=hΨ0jΨ0i; ð6Þ

δE1 ¼hΨ0jVCjΨ0i=hΨ0jΨ0i; ð7Þ

δE2 ¼ ReðhΨ0jVCjδΨ1i − δE1hΨ0jδΨ1iÞ=hΨ0jΨ0i; ð8Þ

where all matrix elements and overlaps can be expressed
with the amplitudes

MðOÞ ¼ hΨT jMLt=2
0 OMLt=2

0 jΨTi; ð9Þ

MkðOÞ ¼hΨT jMLt=2
0 OMLt=2−k

0 MMk−1
0 jΨTi; ð10Þ

where k ¼ 1; 2;…; Lt=2. Here O is the operator inserted in
the middle time step like 1; K þ V0 or VC. In MkðOÞ the
kth copy of M0 is replaced by the full transfer matrix M.
The transfer matrices M0 and M in these amplitudes are
computed using the auxiliary field formalism.
The energies E0 and δE1 are just the expectation values

hOi ¼ MðOÞ=Mð1Þ with O ¼ K þ V0 or VC. These can
be calculated by sampling the auxiliary fields s in M0 with
standard algorithms [3,4]. For δE2 we need to evaluate an
integral over the auxiliary field c from the inserted M in
MkðOÞ. For every sample fs1; s2;…; sLt

g we have

MkðOÞ¼
Z

DcPðcþ c̄Þh���O � � �Mðsk;cþ c̄Þ���iT; ð11Þ

where the ellipses denote the transfer matrices M0ðstÞ with
t ≠ k, hiT is the expectation value in the state jΨTi, and
PðcÞ is the standard normal distribution. In Eq. (11) we
have made a variable change c → c̄þ cwith c real integral
variables. Here c̄ðnÞ is a constant field

c̄ðnÞ ¼ ∂

∂cðnÞ lnh� � �Mðsk; cÞ � � �iT j
c¼0

¼
ffiffiffiffiffiffiffiffiffiffiffi
−atC

p
h� � � ∶M0ðskÞρcðnÞ∶ � � �iT=Mð1Þ; ð12Þ

where the ellipses again represent the M0’s, and C is the
coupling constant for the VC term. Generally, c̄ is a
complex field, e.g., for repulsive interactions such as
Coulomb we have C > 0, the square root in Eq. (12)
introduces an imaginary factor i. In this case, the integrand
in Eq. (11) contains nonzero phases that may induce a
severe sign problem. The variable change in Eq. (11) serves
to alleviate this problem [34]. To see this, we take the
logarithm of the integrand in Eq. (11), expand the result
near c ¼ 0, and apply Eq. (12). We find that the terms linear
in c and c̄ that cause the sign problem cancel exactly and
the integrand can be factorized as
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MkðOÞ ¼ MðsÞ exp
�
c̄2

2

�Z
Dc exp

�
−
c2

2
þ ϵ

�
; ð13Þ

where we omit the summations over lattice sites, and ϵ is a
residual term containing quadratic and higher powers of c.
Because in Mkðs; cÞ a common factor

ffiffiffiffi
at

p
is attached to

every c variable, ϵ is a small number of the orderOðatÞ. For
sufficiently small at, Eq. (13) means that the integrand in
Eq. (11) is a product of a normal distribution and a slowly
varying function expðϵÞ. We can use stochastic methods to
evaluate Eq. (11) by sampling the c field with a standard
normal distribution. This evaluation is unbiased and its
uncertainty is determined by the variation of expðϵÞ. In
practice, we found that the variable change in Eq. (11) can
reduce the statistical error by one order or more, see the
Supplemental Material [35] for a demonstration.
We benchmark the ptQMC using a realistic nuclear

chiral force with two- and three-body interactions up to
N2LO [47,48]. The two-body contact terms and the one-
pion-exchange potential (OPEP) read

V2N¼½B1þB2ðσ1 ·σ2ÞþC1q2þC2q2ðτ1 ·τ2Þ
þC3q2ðσ1 ·σ2ÞþC4q2ðσ1 ·σ2Þðτ1 ·τ2Þ

þC5

i
2
ðq×kÞ ·ðσ1þσ2ÞþC6ðσ1 ·qÞðσ2 ·qÞ

þC7ðσ1 ·qÞðσ2 ·qÞðτ1 ·τ2Þ�f2Nðp1;p2;p0
1;p

0
2Þ

−
g2Afπðq2Þ

4F2
π

�ðσ1 ·qÞðσ2 ·qÞ
q2þM2

π
þC0

πσ1 ·σ2

�
ðτ1 ·τ2Þ; ð14Þ

where σ1;2ðτ1;2Þ are spin (isospin) matrices, Bi and Ci are
low-energy constants (LECs). p and p0 are the relative
incoming and outgoing momenta, respectively, q ¼ p − p0,
k ¼ ðpþ p0Þ=2 are momentum transfers, pi and p0i are the
momenta of the individual nucleons, and gA, Fπ , and Mπ

are the axial-vector coupling constant, pion decay constant,
and pion mass, respectively. The additional regulators,
f2N ¼ exp½−P

2
i¼1 ðp6

i þ p06
i Þ=Λ6� with Λ ¼ 340 MeV

and fπ ¼ exp½−ðq2 þM2
πÞ=Λ2

π� with Λπ ¼ 300 MeV, are
introduced to minimize lattice artifacts. For the OPEP we
introduce a counterterm ∼C0

π as in Ref. [48] to remove the
short-range singularity, which, together with a low Λπ,
adapts the potential to perturbative calculations. Note that
the OPEP contains a tensor interaction that couples differ-
ent partial waves, and thus will contribute significantly to
the energy at second order. For the three-nucleon (3N) force
V3N we adopt a simple 3N contact term with the LEC cE.
The LECs Bi, Ci, and cE are fixed from NN scattering data
and the triton binding energy. We also implement a static
Coulomb force Vcou, see Supplemental Material [35] for
further details of the interaction.
In order to compute ground states of H ¼ K þ V2N þ

V3N þ Vcou using ptQMC, we shall choose a zeroth-order
Hamiltonian H0 ¼ K þ V0 and calculate the energy

corrections with respect to VC ¼ H −H0. We take V0 to
be the nonlocally smeared SU(4) interaction from Ref. [19],
which captures the essential elements of the nuclear force.
For benchmarking purposes, we only keep the two-body
part of V0, which induces no sign problem for even-even
nuclei. The details of V0 can be found in the Supplemental
Material [35]. For further work starting with the Wigner
SU(4) limit, see [49–51].
In Fig. 1, we compare the results obtained using ptQMC

with nonperturbative results. We use a periodic box of size
L ¼ 10 for 3H and L ¼ 8 for the other nuclei. The temporal
step is at ¼ 1=1000 MeV−1. For 3H, the system is small
enough that we can use exact sparse matrix calculations.
For larger nuclei we perform fully nonperturbative QMC
calculations instead, which result in large error bars due to
severe sign problems. For the 16O nucleus, the sign problem
sets in so quickly that we cannot find meaningful results to
make a reliable extrapolation. However, the ptQMC cal-
culations are free from sign problems. The corresponding
statistical errors are smaller than the size of the symbols.
We use a sum of decaying exponential functions to capture
the residual effects of higher energy excitations and
extrapolate the results to τ → ∞. See the Supplemental
Material [35] for further settings of the QMC simulation.

FIG. 1. ptQMC binding energies as functions of the projection
time τ compared with nonperturbative results. The circles (red),
down triangles (green), and diamonds (blue) denote the energies
at the zeroth, first, and second orders, respectively. The squares
(black) represent the exact results calculated with sparse matrix
multiplications for 3H and full nonperturbative QMC for 4He and
16O, respectively. Each group of results are fitted with a sum of
exponential functions (dashed lines). The red bars mark the
experimental binding energies.
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For all three nuclei, the second-order energy corrections are
large and essential in reproducing the data. While this
might seem contrary to the normal hierarchy of the
perturbative series, we will show below that it is actually
a consequence of the symmetry breaking.
We can now examine the convergence pattern of the

perturbative series. In Figs. 2(a)–2(c), we show the calcu-
lated energies as a function of λ, a real number between 0
and 1 that we insert as a control parameter multiplying the
perturbation VC. The ptQMC results are shown as lines.
Because ptQMC corresponds to the Taylor series expansion
at λ ¼ 0, we find straight lines at first and parabolas at
second order. For 3H (4He) we also display the exact
energies of H0 þ λVC obtained with sparse matrix diago-
nalization (full nonperturbative QMC). The difference
between the second-order and exact results indicate the
contributions from the third and higher orders, which are
more than 1 order smaller in magnitude.
For 16O we cannot obtain nonperturbative results for

benchmarking due to the severe sign problem, and so
instead we vary the zeroth-order Hamiltonian to triangulate
the binding energy and estimate its uncertainty. In Fig. 2(c),
the † and ‡ symbols mark the ptQMC energies calculated
with H0 ¼ K þ 1.1V0 and H0 ¼ K þ 1.2V0, respectively.
For each calculation, we use VC ¼ H −H0 as the per-
turbing Hamiltonian and plot the energies as functions of
the small parameter λ. While the variation of H0 shifts the

zeroth-order energy by about 50 MeV, for full Hamiltonian
H (λ ¼ 1) we find that the first- and second-order energies
only vary by about 4 and 2.4 MeV, respectively. These
variations can be identified as the truncation errors of the
perturbative series at corresponding orders, see also the
Supplemental Material [35].
In Table I we present the ptQMC energies for several

nuclei compared to the empirical values. The improvement
of E2 compared with E1 is clearly seen. Generally, the
correlation energy δE2 accounts for about 20% of the total
binding energy for all nuclei with A ≥ 4. We note that the
first-order energy is the expectation value of the full
Hamiltonian using the zeroth-order wave function jΨ0i,
and it is an upper bound on the ground state energy. The
energy correction δE2 is negative definite, reflecting the
fact that the corrected wave function jΨ1i is much closer to
the exact ground state than jΨ0i.
In perturbative calculations, the convergence pattern can

be invalidated by symmetry constraints. As the unperturbed
Hamiltonian H0 respects the SU(4) symmetry, the wave
function jΨ0i must belong to one of its irreducible
representations (IRs). The full Hamiltonian breaks the
SU(4) symmetry, thus its ground state jΨi is a mixture
of different SU(4) IRs. As is shown in Fig. 2(d), the
components of jΨi that mix the SU(4) IRs can only be seen
in jδΨ1i or δE2. This explains the large δE2 in 16O that
cannot be eliminated by varyingH0. We note that this effect
is strongest for the OPEP in Eq. (14) as it breaks both the
Wigner SU(4) and the spin SU(2) symmetries.
In summary, we have presented a novel algorithm

(ptQMC) that allows for a precise calculation of the
second-order perturbative correction in QMC without
referring to the full spectrum of the excited states. While
the QMC method with simplified interactions is success-
fully applied in various fields of physics [19,52–62],
attempts to use more realistic interactions are hindered
by the sign problem. The ptQMC method is free from sign
problems and opens the way to treat complex interactions
systematically. Our method converges quickly for relatively
soft interactions. For interactions with strong short-distance

FIG. 2. (a),(b) The dashed and dash-dotted lines denote the
binding energies of 3H (a) and 4He (b) as functions of the small
parameter λ in first- and second-order ptQMC calculations,
respectively. The black squares are the exact results. (c) The
first- and second-order ptQMC calculations for 16O, starting from
three different zeroth-order interactions V0, 1.1V0 (†), and 1.2V0

(‡). (d) Schematic plot for a perturbative calculation. The zeroth-
order wave functions jΨ0i and jΨ0

0i are confined in a subspace
corresponding to an IR of SU(4).

TABLE I. Binding energies at different orders calculated with
ptQMC compared to experiment (all in MeV). The errors are
combinations of MC statistical errors and extrapolation errors
[35]. See Fig. 2(c) for further notations.

E0 δE1 E1 δE2 E2 Eexp

3H −7.41ð3Þ þ2.08 −5.33ð3Þ −2.99 −8.32ð3Þ −8.48
4He −23.1ð0Þ −0.2 −23.3ð0Þ −5.8 −29.1ð1Þ −28.3
8Be −44.9ð4Þ −1.7 −46.6ð4Þ −11.1 −57.7ð4Þ −56.5
12C −68.3ð4Þ −1.8 −70.1ð4Þ −18.8 −88.9ð3Þ −92.2
16O −94.1ð2Þ −5.6 −99.7ð2Þ −29.7 −129.4ð2Þ −127.6
16O† −127.6ð4Þ þ24.2 −103.4ð4Þ −24.3 −127.7ð2Þ −127.6
16O‡ −161.5ð1Þ þ56.8 −104.7ð2Þ −22.3 −127.0ð2Þ −127.6
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correlations such as tensor forces, which are important in
electroweak processes [63], some preprocessing of the
interaction using renormalization group transformations
or some analogous method is required.
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