
Black Hole Supertranslations and Hydrodynamic Enstrophy

Raja Marjieh*

Department of Psychology, Princeton University, Princeton, New Jersey 08544, USA

Natalia Pinzani-Fokeeva †

Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA,
and Department of Physics, University of Florence, Via G. Sansone 1, I-50019 Sesto Fiorentino, Firenze, Italy

Bar Tavor‡ and Amos Yarom§

Department of Physics, Technion, Haifa 32000, Israel

(Received 26 November 2021; revised 19 March 2022; accepted 2 June 2022; published 16 June 2022)

We study the relation between approximate horizon symmetries of AdS black branes and approximately
conserved currents in their dual hydrodynamic description. We argue that the existence of an approximately
conserved enstrophy current unique to 2þ 1 dimensional fluid flow implies that AdS4 black branes possess
a special class of approximate supertranslations (which we identify).
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Enstrophy is a scalar quantity associated with non-
relativistic, incompressible fluid flow. In two spatial
dimensions it cannot increase in time, and in the absence
of dissipation it is conserved. Its properties are key
ingredients in generating the unique features of turbulent
flows in two spatial dimensions.
The study of enstrophy in relativistic fluids is lagging

behind that of its Galilean cousin. It is possible to identify a
relativistic enstrophy current which is conserved for an
ideal fluid in 2þ 1 dimensions [1–3]. Since dissipative
effects spoil this property, we will refer to such a current as
being approximately conserved.
The existence of a relativistic enstrophy current suggests,

via the gauge-gravity duality [4], that AdS4 black branes
possess an approximate symmetry associated with approxi-
mate enstrophy conservation. Since the enstrophy current
exists only in the hydrodynamic limit, one might expect
that an associated approximate black hole symmetry will
exist on the event horizon.
Indeed, it has recently been established that stationary

black hole geometries are endowed with horizon sym-
metries, classified as supertranslations and superrotations
[5,6] (see Refs. [7–10] for older work on this topic).
Generic fluid flows which possess enstrophy are not
stationary and imply nonstationary dual black hole con-
figurations. While the definition of supertranslations and
superrotations may be extended to nonstationary black

holes, they are generally not associated with conserved
currents [11].
In this Letter we will relate a subset of supertranslation

transformations of AdS4 black branes to approximate
enstrophy current conservation in the dual hydrodynamic
description of the field theory. Further, we clarify the role of
the remaining generators of supertranslations and identify
them with symmetries leading to nonlocal approximately
conserved currents. Superrotations do not lead to approx-
imately conserved currents in a dual hydrodynamic setting.
Relations between hydrodynamics and horizon sym-

metries have been considered in the past. In Ref. [12],
the authors analyzed asymptotically AdS black brane
solutions dual to a superfluid flow and identified the action
of supertranslations on horizon data with the superfluid
Goldstone mode. In Ref. [13], horizon symmetries in 3þ 1
dimensions were shown to be in one to one correspondence
with symmetries of compressible nonrelativistic fluids in
2þ 1 dimensions (see also Ref. [14] for a similar relation in
a different context). The authors of Ref. [15] related the
dynamics of the horizon to Carrollian fluids and the horizon
symmetries to Carrollian geometry. While the authors did
not discuss this, their results are suggestive of a Carrollian
enstrophy current [3] associated with horizon symmetries.
Be that as it may, the novelty of the current work is in its
explicit identification of (a subset of) horizon symmetries
of asymptotically AdS black holes with the symmetries of
relativistic fluid dynamics of the boundary theory.
Our exposition starts with a review of the relativistic,

conformal, enstrophy current, as first discussed in Ref. [1],
and its extensions [2,3]. Using the construction of Ref. [11],
we then discuss the general structure of horizon preserving
diffeomorphisms. Finally, we use our knowledge of
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enstrophy conservation in the boundary theory to show that
AdS4 black brane geometries possess special supertrans-
lation symmetries. We end with a discussion and outlook.
The enstrophy current.—The equations of motion of an

uncharged, conformal, relativistic fluid are given by

∇μTμν ¼ 0; ð1Þ

where Tμν is the energy momentum tensor of the fluid and
is a local function of the fluid velocity uμ (satisfying
uμuμ ¼ −1) and fluid temperature T. Working in a deriva-
tive expansion we have

Tμν ¼ PðTÞ½ðdþ 1Þuμuν þ gμν� þOð∇Þ ð2Þ

where d > 1 is the number of spatial dimensions, PðTÞ ¼
p0Tdþ1 is the thermodynamic pressure with p0 a positive
real number, and Oð∇Þ denotes expressions which contain
one or more derivatives of the hydrodynamic variables uμ

and T.
For any function g which satisfies

uμ∇μg ¼ Oð∇½g�þ2Þ; ð3Þ

we may construct the current

Jμg ¼ gp0ðdþ 1ÞTduμ ð4Þ

which satisfies

∇μJ
μ
g ¼ Oð∇½g�þ2Þ: ð5Þ

In obtaining Eq. (5) we have used that ∇μðTduμÞ ¼ Oð∇2Þ
as a result of the equations of motion (1) expanded in
derivatives. The particular choice of the overall constant
p0ðdþ 1Þ will become clear shortly.
A naive power counting argument would suggest that

∇μJ
μ
g is of the same order as g plus 1 in a derivative

expansion. Instead, Eq. (5) implies that it is order g plus 2.
In other words, it is conserved at least to leading order in a
derivative expansion. In what follows we will refer to Jμg as
an approximately conserved current.
We often require conserved currents to be local in the

hydrodynamic variables, in this case uμ and T. While there
are many nonlocal solutions to Eq. (3), local solutions are
more difficult to come by. Clearly, g ¼ 1, or any constant
for that matter, is a solution to Eq. (3). For such solutions
we obtain

Jμ1 ¼ suμ ð6Þ

with s ¼ ð∂P=∂TÞ the entropy density. Approximate con-
servation of Jμ1 coincides with the leading order equation of
motion and implies conservation of entropy in the absence
of dissipation.

Another solution to Eq. (3) which is local in the
hydrodynamic variables is given by

g ¼ ΩαβΩαβ

s2
; ð7Þ

with

Ωμν ¼ ∂μðTuνÞ − ∂νðTuμÞ; ð8Þ

and is valid only in 2þ 1 spacetime dimensions. The
associated current

Jμ
Ω2

s2

¼ ΩαβΩαβ

s
uμ ð9Þ

is the relativistic enstrophy current [1–3], and its associated
charge is referred to as enstrophy. Of course, if g solves
Eq. (3) so do powers of g, and we find a set of conserved
currents,

JμðΩ2
s2
Þn ¼

�
ΩαβΩαβ

s2

�n

suμ: ð10Þ

When n ¼ 0, the above expression reduces to the entropy
current [Eq. (6)]. The currents in Eqs. (6) and (10) comprise
the only known local solutions to Eq. (3).
We note in passing that in a nonrelativistic, incompress-

ible fluid the charges
R ðωijω

ijÞnd2x, with ωij ¼ ∂ivj −
∂jvi and vi the velocity field, are conserved in the inviscid
limit. The former integral with n ¼ 1 is referred to as the
total enstrophy. Once dissipative effects are included, the
total enstrophy decreases in time. This property, together
with energy conservation, leads to an inverse energy
cascade in 2þ 1 dimensional incompressible nonrelativ-
istic turbulent flows whereby energy is transferred from
small to large scales [16]. Whether similar statements can
be made for relativistic fluids is yet an open problem.
Horizon symmetries and charges.—An extensive analy-

sis of horizon symmetries and charges was carried out in
Ref. [11]. In what follows we summarize the essential
ingredients of Ref. [11] required for this Letter. Consider a
spacetime M with metric gab and event horizon N whose
topology is Z ×R with R a null direction. We refer to Z as
the base space of N . In the case of an asymptotically
AdSdþ2 black brane, Z has topology Rd. Let us denote the
pullback to the horizon by Πi

a so that gij ¼ Πj
bΠj

bgab is
the induced metric on the event horizon. SinceN is null, gij
is not invertible. We denote the pullback fromN to the base
space Z by ΠA

i so that the induced metric on Z is gAB ¼
ΠA

aΠB
bgab where ΠA

a ¼ ΠA
iΠi

a. Since Z is spacelike,
gAB is invertible. In what follows we will consistently use
a; b;… for indices on M, i; j;… for indices on N and
A;B;… for indices on Z. Later, when we will focus on
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asymptotically AdS spaces, we will introduce indices
μ; ν;… on the asymptotic boundary of the spacetime.
We denote by li a representative vector field generating

null geodesics along the null direction R of N , and by la

an extension of it to all of M. We define the nonaffinity
parameter κ via

la∇albjN ¼ κlbjN ; ð11Þ

where, as usual, ∇a is the covariant derivative on M. We
also denote a null cotangent vector on N by ni and
normalize it and its extension to M such that nala ¼ −1.
We will often need to go back and forth between tangent

vectors onM (orN ) and tangent vectors onN (or Z). For
instance, suppose that va ∈ TðMÞ satisfies valajN ¼ 0

(recall that la is the normal to N ). Then, we may always
define a unique vi ∈ TðN Þ such that vawajN ¼ viΠi

awa
for any wa ∈ T�ðMÞ. To simplify our notation we will
write

va∂a ≅ vi∂i: ð12Þ

An infinitesimal coordinate transformation χ ¼ χi∂i is
referred to as a generator of a horizon preserving diffeo-
morphism if

£χli ¼ βli; £χκ ¼ ðβκ þ £lβÞ; ð13Þ

with β a function on N . The first equation in Eq. (13) is an
infinitesimal version of a rescaling of the null vector li

∂i
(which does not have a well defined length due to the fact
that it is null). The second equation in Eq. (13) corresponds
to a shift in the nonaffinity parameter resulting from a
rescaling of la

∂a, cf. Eq. (11).
The generator χi can be naturally decomposed into a

component parallel to li and a component orthogonal to it,

χi∂i ¼ Xi
∂i þ fli

∂i; ð14Þ

with Xini ¼ 0. With this decomposition Eq. (13) reads as

£lXi ∝ li;

£lð£l þ κÞf þ Xi£lð£l þ κÞni þ £Xκ ¼ 0: ð15Þ

It is tempting to refer to a horizon symmetry associated
with Xi as a superrotation and to a horizon symmetry
associated with fli as a supertranslation. Note, however,
that the distinction between the two is dependent on the
choice of ni. In Ref. [11] it was shown, using an explicit
construction, that there exists an ni for which

£lð£l þ κÞni þ ∂iκ ¼ 0: ð16Þ

With this choice of ni, Eq. (15) can be shown to reduce to

£lð£l þ κÞf ¼ 0: ð17Þ

One may refer to the supertranslations and superrotations
obtained using the ni which leads to Eq. (17) as canonical
supertranslations and superrotations.
One of the results of Ref. [11] is that, in the absence of

matter, we can associate to each such χ a Wald-Zoupas
charge Qχ , which is conserved whenever the horizon is
stationary. Operatively, for each generator χ we define a
current qiχ satisfying

qjχ ¼ ðχiKi
j − θχj − βljÞ: ð18Þ

Here β is associated with the scaling of li under χj as in
Eq. (13), Ki

j denotes the Weingarten map

Ki
j
∂j ≅ Πi

a∇alb
∂b; ð19Þ

and θ is the expansion associated with li,

θ ¼ ∇ili ¼ 1ffiffiffiffiffiffiffiffiffiffijgABj
p ∂ið

ffiffiffiffiffiffiffiffiffiffi
jgABj

p
liÞ: ð20Þ

It is straightforward though somewhat tedious to com-
pute the divergence of qiχ . Recall that the Weingarten map
satisfies

liKi
j ¼ κlj; Ki

jgjk ¼
1

2
£lgik: ð21Þ

The expression on the right-hand side of the second
equality is the second fundamental form on N ,
Kij ¼ 1

2
£lgij. It is orthogonal to li allowing us to write

Kij ¼
θ

d
gij þ Σij ð22Þ

where Σijdxidxj ≅ ΣABdxAdxB is symmetric and traceless,
ΣABgAB ¼ 0. Thus, the most general expression for Ki

j

satisfying Eq. (21) is

Ki
j ¼ ωilj þ Sij; ð23Þ

where

Sijdxi∂j ≅
�
θ

d
δA

B þ ΣA
B

�
dxA∂B; ð24Þ

and

ωi ¼ −κnidxi þ Ωidxi ð25Þ

is the rotation one form (sometimes also referred to as the
extrinsic curvature one form) with Ωidxi ≅ ΩAdxA the
normal fundamental form on Z.
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Inserting Eq. (14) into Eq. (18), using Eq. (13) to
evaluate β in Eq. (18), and also inserting the decomposition
of Eq. (23) into Eq. (18), one finds

qiχ ¼ qχli þ XjSji − θXi; ð26Þ

where

qχ ¼ ð£lf þ kf − θfÞ þ Xiðωi þ £lniÞ: ð27Þ

Taking the divergence of Eq. (26) we find

∇iqiχ ¼£lð£lþκÞfþXi£lð£lþκÞniþ£Xκ

þXið£lωi−∂iκÞþ∇jðXiΣi
jÞ−θðfðθ−κÞ

−Xiðωiþ£lniÞÞ−f£lθ−∇iðθXiÞ
�
1−

1

d

�
: ð28Þ

Note that the first line on the right-hand side of Eq. (28)
vanishes if χi is a generator of a horizon preserving
diffeomoprhism, cf. Eq. (15).
If the event horizon is stationary, that is, there exists an α

such that τa ¼ eαla is a Killing vector near the horizon

£τgabjN ¼ 0; ∇c£τgabjN ¼ 0; ð29Þ

then

Kij ¼ £lgij ¼ e−α£τgij ¼ 0; ð30Þ

so that Σij ¼ 0 and θ ¼ 0. In addition, using

∇a∇bτcjN ¼ −Rbca
dτdjN ð31Þ

[which results from Eq. (29)], we find that £τ∇aτ
bjN ¼ 0

implying

£eαlðωi þ∇iαÞ ¼ 0: ð32Þ

Further, using the zeroth law of black holes (for stationary
horizons) [17], we have

∂i½eαðκ þ £lαÞ� ¼ 0: ð33Þ

Putting together Eqs. (32) and (33) we find

£lωi − ∂iκ ¼ 0; ð34Þ

independent on α. Thus, ∇iqiχ ¼ 0 for stationary horizons
as long as χ is a supertranslation or superrotation (or a
combination thereof).
Enstrophy and supertranslations.—In an asymptotically

AdS geometry, there exist stationary black brane solutions
characterized by a uniform Hawking temperature T and a
constant center of mass velocity uμ relative to an observer at

infinity. Here greek indices μ, ν, denote coordinates on the
boundary of AdS space. As discussed in detail in Ref. [4], it
is possible to perturb these black brane solutions in a
derivative expansion where one assumes that derivatives of
T and uμ are small relative to T. The perturbative solution
to the Einstein equations takes the form

gabdxadxb ¼ −r2hðrÞuμuνdxμdxν þ r2Pμνdxμdxν

− 2uμdxμdrþOð∇Þ; ð35Þ

where T and uμ are constrained to satisfy

∇μðTduμÞ¼Oð∇2Þ; Tuν∇νuμ−Pν
μ∇νT¼Oð∇2Þ ð36Þ

with ∇μ a covariant derivative in Minkowski space,
Pμν ¼ ημν þ uμuν, and

h ¼ 1 −
�

4πT
ðdþ 1Þr

�
dþ1

: ð37Þ

Incidentally, Eq. (36) corresponds to the hydrodynamic
Eq. (1) (see Ref. [4]).
The location of the event horizon for the geometry

[Eq. (35)] is given by

r ¼ 4πT
dþ 1

þOð∇Þ: ð38Þ

Here and in the remainder of this section we will use the
coordinates xμ to parametrize the horizon. It now follows
that

li
∂i ¼ uμ∂μ þOð∇Þ ð39Þ

and also

κ ¼ 2πT þOð∇Þ: ð40Þ

We will also choose

nidxi ¼ uμdxμ þOð∇Þ: ð41Þ

(Note that this choice of ni satisfies Eq. (16) to leading
order in a derivative expansion.) With this parametrization
we find that ΩA ¼ Oð∇Þ and that

Σi
jdxi∂j ¼

1

2
σμ

νdxμ∂ν þOð∇2Þ; ð42Þ

where σμν is the shear tensor for a fluid with velocity uμ,

σμν ¼ PμαPνβð∇αuβ þ∇βuαÞ −
2

d
Pμν∇αuα: ð43Þ

With our choice of parametrization we find that the Einstein
equations take the form
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θ ¼ Oð∇2Þ; ð£lωi − ∂iκÞΠi
A ¼ Oð∇2Þ: ð44Þ

Suppose that χi is a supertranslation (Xi ¼ 0) and that f
is orderOð∇½f�Þ in a derivative expansion. In this case qiχ is
also Oð∇½f�Þ but

∇iqifu ¼ Oð∇½f�þ2Þ ð45Þ

on account of the equation of motion [Eq. (44)]. Thus,
supertranslations lead to an approximately conserved
current in the derivative expansion. Superrotations will
not lead to approximately conserved currents owing to the
fact that ∇iqiX ¼ Oð∇½X�þ2Þ but qiX ¼ Oð∇½X�þ1Þ.
In a derivative expansion the supertranslation constraint,

Eq. (15), reads as

£uðκfÞ ¼ Oð∇½f�þ2Þ ð46Þ

and the resulting current is

qifu∂i ¼ κfuμ∂μ: ð47Þ
The divergence of qifu is given, in our current coordinate
system, by

∇iqifu ¼
1

Td ∂iðTdqifuÞ; ð48Þ

where the factors of Td come from the measure on the
spatial section of the horizon. We are guaranteed that qifu is
approximately conserved provided that Eq. (46) is satisfied
which implies that the divergence of

Jμf ¼ Tdκfuμ ð49Þ

in Minkowski space will approximately vanish.
Equation (49) and its approximate conservation repro-

duces Eq. (5) once we identify Jμf in Eq. (49) with Jμg in
Eq. (4). Thus, approximate enstrophy conservation is a
result of a particular set of supertranslations on the horizon
of AdS4 black branes which are local in the black hole
temperature and center of mass velocity, T and uμ.
Likewise, approximate entropy conservation is a result
of horizon supertranslations of AdSdþ2 black branes with
f ¼ c=κ, (with c a constant).
Discussion and outlook.—In this Letter we have shown

that horizon supertranslation generators of AdS black brane
geometries, which are conserved in the stationary limit, are
associated with approximately conserved currents in a dual
fluid description of the geometry.
In asymptotically AdS4 geometries there exists a small

subset of supertranslation generators which are local
functions of the Hawking temperature and black brane
null generators which are dual to the approximately
conserved enstrophy and its various moments. Horizon
superrotations are not associated with conserved charges of

the dual fluid since conservation of superrotations in the
stationary limit is not enhanced to an approximate sym-
metry once stationarity is only approximate.
The analysis carried out in this Letter pertains to

asymptotically AdS black branes in the absence of matter,
dual to uncharged conformal fluids. We expect our main
result to be applicable more broadly to charged non-
conformal fluids. More generally, relying on the membrane
paradigm [18], one might expect a similar construction for
black holes in asymptotically flat space, or even black holes
in general.
Nonrelativistic enstrophy is not only conserved in the

absence of dissipation; it cannot increase in time. Whether
the same can be said regarding the relativistic enstrophy
current is yet an open problem. Another hydrodynamic
quantity which we know must not decrease in time (in a
relativistic setting or not) is the entropy. That entropy
cannot decrease translates into the well known area increase
theorem of black holes [19]. Thus, one cannot help but
wonder whether there is an enstrophy decrease theorem for
black holes valid, at the very least, at low velocities. While
the present work has not dealt with a full description of
black hole enstrophy and its dynamics, we hope it will
provide a stepping stone toward it.
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