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We define an ensemble of random Clifford quantum circuits whose output state undergoes an
entanglement phase transition between two volume-law phases as a function of measurement rate. Our
setup maps exactly the output state to the ground space of a spin glass model. We identify the entanglement
phases using an order parameter that is accessible on a quantum chip. We locate the transition point and
evaluate a critical exponent, revealing spin glass criticality. Our Letter establishes an exact statistical
mechanics theory of an entanglement phase transition.
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Generating entanglement between the qubits in a quan-
tum processor is one of the prerequisites for useful quantum
computation. If the entanglement entropy of an ensemble of
quantum states only scales polylogarithmically with the
number of qubits, we can simulate the states on a classical
computer in polynomial time [1–3]. In contrast, it is
unlikely we can classically simulate quantum algorithms
that involve generic states with larger amounts of entan-
glement [3,4]. If there is any potential for quantum
speedups, it will be in this regime.
In the circuit model of quantum computation, a quantum

algorithm is a time sequence of unitary operations on the
initial state of a qubit array, followed by a measurement of
the output state. While multiqubit unitary operations
increase entanglement on average, decoherence events—
often modeled as midcircuit projective measurements—
decrease it. This raises a question: How high a rate of
decoherence will eliminate the potential for quantum
computational speedup?
Random quantum circuit ensembles with variable mid-

circuit measurement rates offer a minimal setup to inves-
tigate this question [5–10]. These circuits include randomly
chosen one- and two-qubit unitary gates, which generally
increase the entanglement entropy. Then, projective mea-
surements simulate decoherence and decrease entangle-
ment. When the rate of measurement is low, the
entanglement in the system grows linearly in the system
size (a volume law). By contrast, a high rate of measure-
ment prevents entanglement from accumulating in the
system, resulting in entanglement that does not grow with
system size (an area law). By varying the measurement rate,
a variety of random quantum circuit ensembles go through
a measurement-induced phase transition.
Researchers model these phase transitions and their

criticality using statistical mechanics systems. These
include percolation [5,6,8,9,11–14], quantum Ising models
]15 ], and classical Ising and Potts models [8]. These

mappings to statistical mechanics models only work in
specific limits, such as infinite physical Hilbert space
dimension [8,12]. Though this modeling brings theoretical
insight into the transition, it is at the expense of experi-
mental relevance of the model.
In this Letter, we introduce a random Clifford quantum

circuit ensemble with a finite measurement rate, whose
output state maps exactly to the ground state manifold of a
classical p-spin model. This ensemble of circuits undergoes
a volume-to-volume-law entanglement phase transition as a
function of measurement rate. We establish a correspon-
dence between the entanglement entropy of the quantum
state at the output and the ground-state entropy of the p-
spin model. Finite-size scaling reveals spin glass criticality
of the entanglement transition in the ensemble. We also
calculate an order parameter that is accessible in current
quantum processors. Our setup allows for experimental
realization of a spin glass phase transition on a quantum
chip.
We begin by describing the statistical mechanics system

that will model our circuit ensemble. We consider a system
ofN classical Ising spins interacting according to a bipartite
graph G ¼ ðVJ; Vσ; EÞ, which we draw in Fig. 1(a). There
are two vertex sets: VJ for interactions, and Vσ for spins,
with jVJj ¼ M and jVσj ¼ N. The edge set E connects
spins to interactions. Each interaction vertex a ∈ VJ con-
nects to three spin vertices. The Hamiltonian for a given
graph G is

HðG; σ⃗; J⃗Þ ¼ 1

2

X

a∈VJ

ð1 − Jaσa1σa2σa3Þ; ð1Þ

where a1; a2; a3 ∈ Vσ refer to the three spin vertices
connected to a, Ja ¼ �1 are the couplings, and the spins
take values σi ¼ �1. We build each instance of the
Hamiltonian by choosing M triplets ða1; a2; a3Þ uniformly
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at random, with two restrictions: three distinct spin vertices
per triplet and no repeated triplets. We also choose the
couplings Ja such that HðG; σ⃗; J⃗Þ ¼ 0 for at least one spin
configuration. With these choices, the model, Eq. (1), is the
unfrustrated p-spin model for p ¼ 3 [16–18].
The ground states of this model have zero energy. Using

the mapping Ja ¼ ð−1Þya and σi ¼ ð−1Þxi , finding the
ground states is equivalent to solving the system

Bx⃗ ¼ y⃗ mod 2: ð2Þ

B is a M × N binary matrix, called the biadjacency matrix
of the graph G, whose rows represent interaction terms and
columns represent spins, as shown in Figs. 1(a) and 1(b). If
Bij ¼ 1, then interaction i involves spin j. Otherwise, the
entry is zero.
The number of ground states is

N GSðBÞ ¼ 2N−rankðBÞ; ð3Þ

where rankðBÞ is the binary rank of B and N − rankðBÞ is
the number of independent rows of B. The ground-state
entropy is defined as

SGSðBÞ≡ logN GSðBÞ; ð4Þ

where we take the natural logarithm for the rest of the
Letter.
For a given B, any unfrustrated choice of couplings in

Eq. (1) gives the same number of ground states, since
rankðBÞ is independent of the couplings.
We are now ready to introduce our random circuit

ensemble, shown schematically in Fig. 1(c). We use N þ
M qubits to represent a spin system with N spins and M
interactions. For each spin participating in an interaction,
the corresponding spin qubit toggles the state of an
interaction qubit via a controlled NOT (CNOT) gate.
Swap gates allow any spin qubit to toggle any interaction
qubit, such that any graph G can be realized in this setup.
At the circuit’s output, each interaction qubit stores the
parity of the configuration of the three spin qubits that
connect to it. Note that because we can implement the
circuit described so far using only CNOT gates, this is a
classical circuit. Each circuit requires OðNMÞ gates.
To generate entanglement at the output of the circuits, we

initialize the input in a superposition. Each spin qubit is put
into the jþi state and each interaction qubit in j0i, yielding
the input state jψiin ¼ jþi⊗N j0i⊗M. After applying the
gates defined by B, the state at the output of the circuit
(before any measurements) is

jψiout ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2rankðBÞ
p

X

y⃗

jy⃗ijfx⃗∶Bx⃗ ¼ y⃗gi; ð5Þ

where jfx⃗∶Bx⃗ ¼ y⃗gi is an equal superposition of N GS
solutions to Eq. (2) for a given choice of B and y⃗. The
normalization of Eq. (5) comes from the number of vectors
jy⃗i in the sum, which is 2rankðBÞ. To see this, note that the
unitary that describes a circuit of CNOTand swap gates is a
permutation matrix. This means that if we start with a
superposition of 2N states at the input, we necessarily end
up with a superposition of 2N states at the output. But
Eq. (3) dictates that for each jy⃗i we must have 2N−rankðBÞ

configurations, and so there must be 2rankðBÞ terms in
the sum.
If we measure the interaction qubits at the output of the

circuit, then the measurement outcome is a parity assign-
ment y⃗out. The remaining quantum state over the spin qubits
is a superposition of ground states to the Eq. (1)
Hamiltonian for the choice of couplings J⃗ ¼ ð−1Þy⃗out .
Subsequently measuring the spin qubits picks out one
ground state σ⃗ ¼ ð−1Þx⃗out .
Now, suppose we measure only a subset A consisting of

the first k ≤ M interaction qubits and get outcome
y⃗out ¼ ðyout;1;…; yout;kÞ. The updated state is

jψiout;A ¼ jy⃗outihy⃗outj ⊗ Iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Prðy⃗outÞ

p jψiout; ð6Þ

(a)

(c)

(b)

FIG. 1. The spin glass model in its various forms. (a) A graph of
spins and interactions, as in Eq. (1). (b) The matrix B of the graph,
as defined in Eq. (2), where each column is a spin and each row is
an interaction. (c) The quantum circuit built from B. A 1
corresponds to the rectangular gate shown in the inset, composed
of a CNOT, then a swap, whereas a 0 is a swap gate. The initial
quantum state is jψiin, the quantum state after the applying the
gates in B is jψiout in Eq. (5), and after measuring a region A of
the interaction qubits, the output state is jψiout;A in Eq. (7). The
labels for the qubits in the quantum circuit specify the spins and
interactions.

PHYSICAL REVIEW LETTERS 128, 240601 (2022)

240601-2



where I is the identity operator on the remaining N − k
qubits and Prðy⃗outÞ is the probability of getting outcome
y⃗out. Define BA as the submatrix of B consisting of the rows
corresponding to interactions in A. There are 2rankðBAÞ
possible vectors y⃗out that have solutions to BAx⃗ ¼ y⃗out,
so Prðy⃗outÞ ¼ 2−rankðBAÞ. The postmeasurement state is then

jψiout;A ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2rankðBÞ−rankðBAÞ
p

X

fy⃗∶y⃗k¼y⃗outg
jy⃗ijfx⃗∶Bx⃗¼ y⃗gi; ð7Þ

where y⃗k is the vector made from the first k components
of y⃗.
Equation (7) is a Schmidt decomposition between the

interaction qubits and the spin qubits, with the normaliza-
tion being the Schmidt coefficients fλig. The states jy⃗i are
orthonormal (each jy⃗i is unique with unit length), and so
are the normalized states jfx⃗∶Bx⃗ ¼ y⃗gi, since all the
components of each state are solutions to Eq. (2) for only
one jy⃗i.
The entanglement entropy between the interaction qubits

and the spin qubits in the postmeasurement state is

Sðjψiout;AÞ≡ −
X

i

λ2i log λ
2
i ¼ ½rankðBÞ − rankðBAÞ� log 2:

ð8Þ

In the following, we measure all entropies in units of log 2.
We also focus only on instances with sufficiently large
M ≥ N such that rankðBÞ ¼ N with high probability. The
entanglement entropy is then

Sðjψiout;AÞ ¼ N − rankðBAÞ ¼ SGSðBAÞ; ð9Þ

where SGSðBAÞ is the ground-state entropy of the instance
of the Eq. (1) Hamiltonian with interaction graphGA and its
associated matrix BA. Equation (9) is our main result.
Equation (9) establishes an exact correspondence

between the entanglement entropy of the postmeasurement
state in our random quantum circuit ensemble and the
ground-state entropy of a spin glass model. Note that while
we can also calculate the entanglement entropy in Eqs. (8)
and (9) using the stabilizer formalism [19–21], our result
gives Eq. (9) a physical meaning. The parameter control-
ling the entropy in both models is α≡ jAj=N. In the spin
glass model, α is the number of interactions per spin. In the
random quantum circuit model, α is the number of
measured interaction qubits to spin qubits (a measurement
rate). This differs from other work on random quantum
circuits, where the measurement rate refers to the proba-
bility of measuring any qubit during each layer of the
circuit.
We can go further and obtain an exact expression for the

ensemble-averaged entanglement entropy by exploiting the
correspondence to the spin glass. The mean ground-state

entropy density of the unfrustrated p-spin model at a given
α is given by [22]

sGSðαÞ ¼ max
0≤d≤1

½ð1−dÞ½1− log ð1−dÞ�−αð1−d3Þ�; ð10Þ

where sGSðαÞ ¼ hSGSi=N, with h…i denoting the ensemble
average. This translates to the mean entanglement entropy
of our random circuit ensemble via Eq. (9).
The ground space of the Eq. (1) Hamiltonian exhibits a

sharp transition [16,17] as a function of α. The transition
occurs at αc ≈ 0.918 and coincides with the slowing down
of all local relaxation dynamics. The transition causes a
nonanalyticity of Eq. (10) at αc. This transition is physi-
cally the same as the SAT-UNSAT transition in p-XORSAT
[18,23], where the probability of finding at least one
solution to the model jumps from one to zero.
For α < αc, the system is paramagnetic. In terms of

Eq. (2), each interaction is approximately independent of
the others, dividing the ground space in half. Here,
rankðBAÞ ¼ jAj ¼ Nα and the maximum in Eq. (10) occurs
for d ¼ 0. In the quantum circuits, measuring an interaction
qubit eliminates half the ground states. The mean entan-
glement entropy after measuring A interaction qubits then
follows the volume law hSi ∼ Nð1 − αÞ.
For α ≥ αc, the system is a spin glass. The overlap

between ground states to Eq. (2) for a given y⃗out goes from
zero to a finite value as α increases past αc, meaning most
ground states share the same spin value on a given site
[16,17]. Equation (4) reflects this by having the maximum
occur at d > 0. Now, rankðBAÞ ≠ Nα but the entanglement
entropy still follows a volume law, just with a different
slope compared to the paramagnet. This implies the
ensemble of states fjψiout;Ag undergoes an entanglement
phase transition at αc.
To detect the criticality of our ensemble of quantum

circuits, we introduce a measure we call “entanglement
susceptibility.” This quantity monitors the change in
entanglement entropy upon measuring one more interaction
qubit in the system. The idea is that, by Eqs. (9) and (10),
the entanglement entropy is nonanalytic at αc, then its
derivative will be discontinuous.
For a given matrix BA, we define the entanglement

susceptibility χS as

χSðjψiout;AÞ≡ −Δh½S�ðjψiout;AÞ
¼ ½Sðjψiout;AÞ − Sðjψiout;AþhÞ�
¼ ½rankðBAþhÞ − rankðBAÞ�; ð11Þ

where Δh is a finite difference with a step of one extra
measured interaction qubit h.
Because we define χS in terms of a difference of ranks

between matrices that only differ by one row, χS ∈ f0; 1g.
A new interaction is independent from the previous ones
when χS ¼ 1, and dependent when χS ¼ 0. Each matrix B
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produces a set of values fχSg for each α, and averaging
over the ensemble of matrices produces the finite-size
scaling curves we use to detect the transition.
As N → ∞, hSi=N approaches sGSðαÞ in Eq. (10). This

means the entanglement susceptibility will go from a finite
difference to a derivative [22]:

lim
N→∞

hχSi ¼ −
dsGSðαÞ

dα
: ð12Þ

Equation (12) provides an exact expression for the discon-
tinuous phase transition occurring in the equation for
SGSðαÞ in the thermodynamic limit.
We then do finite-size scaling with the entanglement

susceptibility using the scaling form [24,25]

hχSi ¼ f½ðα − αcÞN1=ν�; ð13Þ

with ν being the scaling dimension of the entanglement
susceptibility. We find a value of αc;scaling ¼ 0.9175�
0.0006 and ν ¼ 1.8� 0.1. The value of αc;scaling agrees
with the value in the literature of αc ≈ 0.9179. The critical
exponent ν also agrees with numerical [17] and analytical
[26] work on the criticality of the SAT-UNSAT transition,
while being distinct from the critical exponent of ν ≈ 1.3
commonly found in other ensembles of random Clifford
circuits [10].
This choice of αc and ν collapses the data around the

critical point as shown in Fig. 2. The transition sharpens
with system size, and becomes discontinuous in the N →
∞ limit, which we mark with the dashed line. We conclude
that our ensemble of random quantum circuits has the same
criticality as the 3-spin model and associated Boolean
satisfiability problems.

We can also derive an order parameter for the entangle-
ment phases in our quantum circuit model via the 3-spin
model [Eq. (1)]. The order parameter for this model is the
overlap q of ground states [17]. It is defined as [27]

q ¼ 1

N

XN

i¼1

hσii2; ð14Þ

where h…i is an average over all the N GS ground states,
and σi is the spin at a specific site i. We square the average
because if not the sum over the spins in Eq. (14) is the
magnetization, which is on average zero for this ensemble
(and spin glasses in general). We then average q over many
instances. The overlap captures the degree to which ground
states to a given instance of Eq. (1) are the same.
For small α, the overlap is q ¼ 0, because ground states

are independent. This is true all the way until αc, where
ground states then tend to overlap on most sites. The
overlap q takes on a finite value, trending to q ¼ 1 as
α → ∞. We can see this discontinuous jump in Fig. 3,
which sharpens with system size. Figure 3 also confirms
that the overlap order parameter is accurately approximated
using a small sample of the ground states.
The quantum circuits defined so far are a subset of

Clifford circuits, meaning the state at any given time is a
stabilizer state. Are stabilizer states a necessary condition to
observe the spin glass entanglement criticality? Figure 3
presents evidence that the answer is “no” and that this
critical phenomenon is more general. Instead of the initial
state jψiin ¼ jþi⊗N j0i⊗M, we input the partially scrambled
state jψ̃iin ¼ jψ scrambledi⊗N j0i⊗M into our circuits. That is,
instead of putting the spin qubits in an equal superposition
of all computational basis states, we put them in a random

FIG. 2. Finite-size scaling of the averaged entanglement sus-
ceptibility hχSi, in units of log 2. We average over 20 000 samples
for each system size, and error bars indicate standard error of the
mean. We calculate the exact expression by taking a finite
derivative of Eq. (10). The inset gives the collapsed version of
the main plot within the region αc � 0.05.

FIG. 3. Overlap qðαÞ of the ground states. We average over
1000 samples per system size. We sample min ð100;N GSÞ
ground states, and use the unique ones to calculate the overlap
in Eq. (14). Error bars indicate standard error of the mean. We use
either the jψiin ¼ jþi⊗N j0i⊗M input state (blue circles), or a
random input state (red squares). The dashed line is the exact
overlap in the thermodynamic limit [22].
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one. We then follow the same measurement protocol as for
the Clifford case and compute qðαÞ [24]. The red curves in
Fig. 3 show that the output state still transitions at αc, at
least for small system sizes.
The order parameter qðαÞ for our Clifford ensemble can

be measured on existing quantum hardware. This requires
multiple measurements jx⃗i for a given jy⃗i. Note that
measuring the interaction qubits at the output of the
quantum circuit will in general give different vectors y⃗,
requiring many shots (on the order of 2rankðBÞ) to get two
measurements results that have the same y⃗. This, however,
is not necessary. Suppose we measure the pair ðx⃗; y⃗Þ. We
can then use Gaussian elimination to solve for a “reference”
configuration x⃗0 for a fixed y⃗, such that Bx⃗0 ¼ y⃗. The
reference configuration could be, for example, the con-
figuration x⃗0 whose bit sequence represents the smallest
nonzero integer. Then, observe that

z⃗≡ x⃗þ x⃗0 → Bz⃗¼ Bðx⃗þ x⃗0Þ ¼ y⃗þ y⃗¼ 0⃗ mod 2: ð15Þ

This means we can create a pair ðz⃗; 0⃗Þ for any measurement
of the interaction vector y⃗ we get. Because we can do
Gaussian elimination in polynomial time with the system
size, this means we can efficiently transform any meas-
urement output to the y⃗ ¼ 0⃗ interaction vector, and then use
Eq. (14). This means that we can efficiently measure the
order parameter qðαÞ on a quantum chip.
We note two distinctions between our setup and previous

work on entanglement phase transitions in random quan-
tum circuits. First, previous studies required a finite
measurement rate throughout their circuits. For depth-d
circuits with n qubits, this leads toOðndÞmeasurements. In
contrast, in our ensemble, measurements are only required
at the output and are OðnÞ. This makes our setup simpler
and may also reduce the effect of readout errors in practice.
Second, our circuits only use CNOT gates (excluding the
input) to encode the p-spin system. The “random” part of
our ensemble is in the placement of these gates, as opposed
to randomly sampling from the full Clifford gate set like in
previous work. Despite these differences, our work cap-
tures the salient features of entanglement phase transitions,
with the added advantage that the criticality in this case is
exactly tractable.
In summary, by starting with a statistical mechanics

system and embedding it into an ensemble of random
Clifford circuits, we showed how our random quantum
circuits display an entanglement phase transition with spin
glass criticality. This quantum circuit ensemble is a
physically relevant model, with connections to spin glasses
and Boolean satisfiability problems. The numerical evi-
dence we presented indicates the presence of the same
transition in more general circuit classes. Our Letter
emphasizes the feasibility of detecting this phase transition
on both current and future quantum processors. Our hope is
to not only use quantum processors to study phase

transitions in random quantum circuits, but as experimental
platforms for studying spin glass physics.
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