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Non-Gaussian states are essential for many optical quantum technologies. The so-called optical quantum
state synthesizer (OQSS), consisting of Gaussian input states, linear optics, and photon-number resolving
detectors, is a promising method for non-Gaussian state preparation. However, an inevitable and crucial
problem is the complexity of the numerical simulation of the state preparation on a classical computer. This
problem makes it very challenging to generate important non-Gaussian states required for advanced
quantum information processing. Thus, an efficient method to design OQSS circuits is highly desirable. To
circumvent the problem, we offer a scheme employing a backcasting approach, where the circuit of OQSS
is divided into some sublayers, and we simulate the OQSS backwards from final to first layers. Moreover,
our results show that the detected photon number by each detector is at most 2, which can significantly
reduce the requirements for the photon-number resolving detector. By virtue of the potential for the
preparation of a wide variety of non-Gaussian states, the proposed OQSS can be a key ingredient in general
optical quantum information processing.
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Introduction.—A non-Gaussian state is a key ingredient
for quantum information processing, since the non-
Gaussian feature is crucial for achieving universal and
fault-tolerant quantum computation (FTQC) with optics
[1–10]. In addition, it is essential for many applications
[11] such as entanglement distillation [12–15], bosonic
error-correcting codes [16–22], quantum communication
[23–27], quantum metrology [28,29], cloning [30]. The
non-Gaussian state preparation is therefore a major effort
in quantum information processing, and it has been
extensively studied both theoretically [31–38] and exper-
imentally [39–49]. Reviews on non-Gaussian state prepa-
ration can be found in Refs. [50,51].
The non-Gaussian state preparation using Gaussian

inputs, linear optics, and photon-number resolving
(PNR) detectors is a promising way in optics [52,53],
which we refer to as the optical quantum state synthesizer
(OQSS). The striking feature of the OQSS is the ability to
prepare, in principle, any superposition with an arbitrary
pattern of Fock-state coefficients, which means that the
OQSS can prepare an arbitrary single-mode non-Gaussian

state. In the OQSS, we need to simulate the state prepa-
ration and optimize the circuit parameters with a classical
computer so that OQSS prepares the desired pattern of
Fock-state coefficients. However, an inevitable and crucial
problem is the complexity of the numerical simulation of
the state preparation on a classical computer: the computa-
tional time scales exponentially with the number of input
modes for the circuit of OQSS. This limits the number of
patterns of coefficients we can optimize. The complexity
mainly comes from the calculation of a loop Hafnianwhich
is contained in the class of #P-complete problems [54,55],
where the complexity scales as an exponential time with the
number of Gaussian inputs. The complexity of the calcu-
lation of a Hafnian is used for achieving a quantum
supremacy [56] over a classical computer. In fact, a
quantum supremacy has been demonstrated by a protocol
using linear optics [57], commonly referred to as Gaussian
boson sampling [58].
The complexity problem limits the set of non-Gaussian

states available for advanced quantum information process-
ing. Thus, a systematic and efficient method to find an
experimental setup for a non-Gaussian target state prepa-
ration would be highly beneficial. In this Letter, we develop
an efficient technique to design OQSS circuits, effectively
circumventing the complexity problem by applying ideas
of a backcasting approach to the OQSS circuit that is
decomposed into smaller, more tractable sublayers. As an
important example and application, we numerically show
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that our OQSS method can simulate the preparation of the
Gottesman-Kitaev-Preskill (GKP) qubit with a fidelity
sufficient for FTQC [2] in polynomial time for the number
of patterns of the Fock-state coefficients.
Optical quantum state synthesizer.—Figure 1 shows the

schematic diagram for the OQSS, where l input vacuums
are initially squeezed and displaced, then combined at a
beam-splitter network, and finally all modes except that for
the output state are measured by PNR detectors. Depending
on the pattern of the detected photon numbers and circuit
parameters for linear optics, the output jψiout is prepared as

jψiout ≈ U
Xnmax

i¼0

ci
N
jii; ð1Þ

where nmax, ci, and N correspond to the truncated photon
number in the Fock basis, the coefficient of the Fock state
jii for the eigenvalue i, and a normalization factor,
respectively, and U is composed of Gaussian operations
for a single mode (e.g., squeezing, displacement, and
rotation) [52,59]. The truncated photon-number nmax is
given by nmax ¼

P
l
i¼2mi, and coefficients ci depend onmi

and the circuit parameters such as a transmittivity of a beam
splitter, the amount of a squeezing, and the amount of a
displacement [52]. These parameters are optimized by an
optimization algorithm running on a classical computer so
that jψiout becomes close to the target non-Gaussian state.
In order to prepare an arbitrary non-Gausssian state using
OQSS with nmax, we need to optimize nmax þ 1 coefficients
of the generated state for the Fock basis states from j0i to
jnmaxi. The number of independent coefficients, which we
can access for optimization, has been conjectured [52] as
ðlþ 2Þðl − 1Þ=2, which scales polynomially with l inputs.
Thus, OQSS with l inputs is expected to prepare an
arbitrary state up to jnmaxi with

nmax ¼ ðlþ 2Þðl − 1Þ=2 − 1: ð2Þ

Time complexity of the conventional method.—The
problem of time complexity mainly comes from the

calculation of a loop Hafnian, which is a matrix function
that counts the number of perfect matchings of weighted
graphs with loops [55,61]. We here consider that an l-mode
Gaussian state ρ, and the ith mode for input and output
contains ni andmi photons. As introduced in Refs. [55,61],
a loop Hafnian appears in the Fock matrix elements of a
Gaussian state to obtain the output of the circuit, and the
Fock matrix elements are given by hmjρjni ∝ lhafðÃÞ,
where lhaf is a loop Hafnian, and Ã is a square matrix
of dimension D ¼ P

l
i¼1ðni þmiÞ with n ¼ ðn1;…; nlÞ

and m ¼ ðm1;…; mlÞ. As shown in Ref. [61], the number
of steps to calculate a loop Hafnian is obtained by the
smaller one of two values of

OðlApGl
pÞ; Oðl2d2dlÞ; ð3Þ

where Ap, Gp, and d are the arithmetic means, geometric
means, and a chosen truncated dimension for the output
Hilbert space, respectively. Ap and Gp are given by Ap ¼
ð1=lÞPl

i¼1ðni þ 1Þ and Gp ¼ fQl
i¼1ðni þ 1Þg1=l, respec-

tively [55,61]. Equation (3) means that the computational
timescaling for the conventional non-Gaussian state prepa-
ration scales exponentially with l inputs.
Concept of our scheme.—The backcasting approach is

the key to circumvent the time complexity. The conventional
OQSShas a single circuit, while the proposedOQSSconsists
of multiple and layered circuits, as shown in Fig. 2(a). In the
layered circuits, the truncated photon number of states
progressively increases in each layer so that the truncated
output photon number in the final layer becomes nmax. To
determine the circuit parameters for each circuit, a back-
casting approach is employed: it begins with a parameter
estimation so that the circuit in the final layer generates the
target state. Then, we optimize parameters backwards from
final to first layers, anddetermine the circuit parameters in the
first layer.

FIG. 1. Schematic diagram for the OQSS consisting of linear
optics and PNR detectors. The output state jψiout is generated so
as to be close to the target non-Gaussian state.

FIG. 2. Concept of our scheme. (a) Proposed OQSS using a
backcasting approach, where the circuit is divided into sublayers.
(b) Divided circuits are simulated backwards from final to first
layers.
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In Fig. 2(b), for instance, one component of the layered
circuit prepares the state jψi4 using3 inputs jψii (i ¼ 1; 2; 3),

where jψi4 and jψii are described as Eq. (1) with nð4Þmax and

nðiÞmax, respectively. After conditioning on an appropriate
pattern of the detected photon numbers and circuit param-

eters, nð4Þmax becomes larger than nðiÞmax, where parameters are
determined by considering jψi4 as the target for the circuit.
By repeating this procedure, we can obtain the target with a
large nmax by using the set of small and simple circuits.
Specific case of our scheme.—Specifically, let us con-

sider the case of 3 layers. Figure 3(a) shows the schematic
view of the proposed OQSS. In the first layer, 3 input states
in each of the circuits are combined by linear optics, and
measured by PNR detectors except for the output from the

kth circuit in the first layer, jψið2;kÞ1 . Then, the output jψið2;kÞ1

becomes the input for the next layer. The procedure for the
first layer succeeds, when all detectors in the first layer count

the predefined photon numbers,mð1;kÞ
i . To limit the complex-

ity, the detected photon number in every detector and the
number of inputs in the first step are set to at most 4.
Then, in the intermediate layer, two inputs are coupled

by a single beam splitter, and one of the states is measured
by the on/off detector which can identify whether there is
(a) photon(s) or not. The generation of the states succeeds
when all detectors in the first intermediate layer count the
predefined photon numbers mð2;kÞ

i ¼ 0 [62]. When the
number of the intermediate layers ≥ 2, intermediate states
are repeatedly generated in subsequent layers in a similar
manner. In the final layer, we obtain the output state,

jψiðNL;1Þ
1 , approximated by Eq. (1).
When considering mðj;kÞ

2 ¼ 0 (2 ≤ j ≤ NL), the trun-
cated photon number of the output, nmax, is given by the
sum of those of the outputs in the first layer as

nmax ¼
X2NL−1

k¼1

nð1;kÞmax ¼
X2NL−1

k¼1

�X3
i¼2

mð1;kÞ
i

�
; ð4Þ

where NL, m
ð1;kÞ
i , and nð1;kÞmax are the number of layers, the

detected number of photon in the ith input mode in the kth
circuit of the first layer, and the truncated photon number
of the output in the kth circuit of the first layer,
respectively.
Although the numbers of input modes and mðj;kÞ

2 for the
jth layer (2 ≤ j ≤ NL) are not necessarily two and zero,
respectively, there are three reasons for doing this. First, the
success probability for 2 inputs is larger than for more than

3 inputs. Second, setting mðj;kÞ
2 ¼ 0 maximizes the trun-

cated photon number nmax for the output. Third, using on/

off detectors for measurementsmðj;kÞ
2 ¼ 0 is experimentally

more feasible than the use of PNR detectors.
Figure 3(b) shows the summary of the proposed algo-

rithm consisting of 4 steps. In step 1 [Fig. 3(b)(i)], we set
the truncated photon number for the target, nmax. Then we
set the number of the layer NL and the detected photon

numbers mðj;kÞ
2 so that the values satisfy Eq. (4). From the

next step, the circuit parameters are obtained by the
optimization. In step 2 [Fig. 3(b)(ii)], coefficients of two
inputs and parameters for a beam splitter coupling are
optimized so that the target GKP qubit in the mode 1 is

generated from two inputs, jψiðNL−1;1Þ
1 and jψiðNL−1;1Þ

2 , with

no photon detection (i.e., mðNL;1Þ
2 ¼ 0). In step 3 [Fig. 3(b)

(iii)], we obtain the parameters repeatedly up to the second
layer after replacement. In step 4 [Fig. 3(b)(iv)], finally, we
determine the circuit parameters in the first layer.
Let us consider the generality of the possible, targeted

outputs. In the kth circuit of the first layer, the circuit can

FIG. 3. Proposed OQSS. (a) The proposed OQSS for a specific case with a single intermediate layer and 3 inputs for each of the
circuits in the first layer. (b) The description of the whole procedure to determine the circuit parameters. (i) Step 1. (ii) Step 2. (iii) Step 3.
(iv) Step 4.
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generate an arbitrary state up to nð1;kÞmax ¼ðlþ2Þðl−1Þ=2−1
from Eq. (2). Then nnmax would be conjectured as in
Eq. (4). Thus, the proposed OQSS has the potential to
generate an arbitrary state up to

nmax ¼
XNfirst

k¼1

�ðlk þ 2Þðlk − 1Þ
2

− 1

�
; ð5Þ

whereNfirst is the number of circuits in the first layer, and lk
is the number of inputs for the kth circuit in the first layer.
For the specific circuit described in Fig. 3, Nfirst corre-
sponds to 2NL−1 in Eq. (4).
Time complexity of the proposed scheme.—In our

method, the first layer mainly takes the number of steps
to calculate a loop hafnian, where there are 2NL−1 circuits
and the number of steps for each of the circuits is obtained
by Eq. (3). The key of our scheme lies in choosing the low
number of inputs. When considering a positive integer,
e.g., l ¼ 3 in Eq. (3), the number of steps is given by the
smaller one of the two values of Oð3ApG3

p2
NL−1Þ and

Oð9d52NL−1Þ. More specifically, when we consider

the case nð1;kÞmax ¼ nð1Þmax in Eq. (4), the numbers of steps

become Oð3ApG3
pnmax=n

ð1Þ
maxÞ or Oð9d5nmax=n

ð1Þ
maxÞ using

nmax ¼ nð1Þmax2
NL−1, where d and nmax can be fixed to less

than 100 and 50, respectively.
GKP qubit.—We focus on the preparation of the GKP

qubit [2], which has two advantages towards optical FTQC
with continuous variables [5–10,63–69]: (i) Error toler-
ance. The GKP qubit can achieve the hashing bound of the
additive Gaussian noise [6,70] and protects against a
photon loss [71]. (ii) Scalability. Only by a beam splitter
coupling, the GKP qubits can be entangled within a cluster
state, where a large-scale cluster has been realized exper-
imentally in optics [72,73].
In the numerical calculation, we target the 0 state for

GKP codewords, j0̄i, where our proposed OQSS generates
the approximated 0 state j0̃i approximated by Eq. (1), so as
to be close to j0̄i. Here we introduce the parameter
squeezing level used for the threshold required for
FTQC, and around 10 dB is often used for the threshold
[6,74–76]. To realize a high fidelity between j0̄i and j0̃i,
i.e., jh0̃j0̄ij2, a large nmax is required as the squeezing level
becomes larger. We can roughly estimate the fidelity for
nmax by considering jh0̄nmax

j0̄ij2, where j0̄nmax
i ∝ Pnmax

i¼0 gijii
and gi are coefficients of Fock basis states of j0̄i. For
example, jh0̄nmax

j0̄ij2 with 10 dB, ∼99%, ∼99.9%, and
∼99.99%, corresponds to nmax ¼ 24, 32, and 42,
respectively.
Numerical results.—To prepare the GKP qubit for

FTQC, we target j0̄i around 10 dB, and nmax is set to
32. For nmax ¼ 32, we adopt a condition that sets the
number of inputs for each circuit in the first layer to 3, the
detected photon number for both detectors in the first layer

is 2, and the number of layers is 4. This condition ensures
the state preparation with a high fidelity, since we would
access the number of independent coefficients up to the
Fock state j32i using Eq. (5) with Nfirst ¼ 8 and lk ¼ 3.
We evaluate the fidelity between the target and output

states, Fout, and the success probability of the output, Psuc.
To verify Fout ≈ 99.9%, we numerically calculate the
fidelity, Fout ¼ h0̄jρoutj0̄i with ρout ¼ jψiouthψ jout, where
parameters are optimized using Python modules the Walrus
and Strawberry Fields [77–79]. In Fig. 4, the fidelities for
nmax ¼ 32 are plotted as a function of the squeezing level of
the target GKP qubit. The numerical results show that the
fidelities are larger than 99.9% with the squeezing smaller
than ∼10 dB. If a higher fidelity is required, corresponding
to a squeezing value greater than 10 dB, we just need to
increase nmax. The important feature of our method is that
the simulation with larger nmax such as nmax ¼ 100 can be
also implemented in a realistic computational time, since
the computational time for the first layer is not changed
and the increase of the number of layers scales as
polynomial time. For the success probability, we obtained
the success probability Psuc ≈ 10−29 for nmax ¼ 32. To
improve Psuc, we could use the quantum memory. See
Supplemental Material for details about Fout, Psuc, and
quantum memory [80].
Discussion and conclusion.—We have developed an

efficient way to simulate the non-Gaussian state preparation
via the OQSS. Our innovation can considerably reduce the
simulation time on a classical computer to prepare an
arbitrary non-Gaussian state with a large truncated photon
number by employing a backcasting approach. As a
specific example, we numerically showed that our scheme
can simulate the preparation of the GKP qubit with a
fidelity as high as required for FTQC in polynomial time.
Furthermore, the proposed OQSS offers the elimination
of an experimental requirement for PNR detectors.
Conventionally, it has been assumed that a non-Gaussian
target with a high fidelity and a large truncated number
might considerably increase the number of detected pho-
tons and hence require unfeasible PNR detectors.

FIG. 4. The numerical results to prepare an approximated GKP
qubit with the truncated photon number nmax ¼ 32. The fidelities
Fout are plotted as a function of the squeezing level of the target.
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So most importantly from a practical point of view, our
results show that the detected photon number by each
detector is at most 2 which has been demonstrated [86–88].
Apart from FTQC, the OQSS allows us to prepare arbitrary
non-Gaussian states which are an indispensable resource
for many quantum technologies. Thus, our scheme can play
a crucial role in realizing many applications for optical
quantum information processing.
Finally, let us mention several directions for further

investigations. First, some parameters, such as NL, m
ðj;kÞ
i ,

and the number of modes in each circuit, are still predefined
in our current approach. Thus, a generalized method to also
find the circuit parameters that achieve a certain target
fidelity by incorporating all such parameters would be a
very useful extension of our work. Second, we could
further evaluate the performance of our method when
imperfections of the OQSS, such as photon loss, inefficient
detectors, and anti-squeezing effects [64], are taken into
account [89]. Lastly, this work focuses on the preparation
of single-mode states. Nonetheless, the OQSS can poten-
tially also prepare multimode states. It is an interesting
open question what kind of multimode states the OQSS can
generate [90].
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