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Quantum resource manipulation may include an ancillary state called a catalyst, which aids the
transformation while restoring its original form at the end, and characterizing the enhancement enabled by
catalysts is essential to reveal the ultimate manipulability of the precious resource quantity of interest. Here,
we show that allowing correlation among multiple catalysts can offer arbitrary power in the manipulation of
quantum coherence. We prove that any state transformation can be accomplished with an arbitrarily small
error by covariant operations with catalysts that may create a correlation within them while keeping their
marginal states intact. This presents a new type of embezzlement-like phenomenon, in which the resource
embezzlement is attributed to the correlation generated among multiple catalysts. We extend our analysis to
general resource theories and provide conditions for feasible transformations assisted by catalysts that
involve correlation, putting a severe restriction on other quantum resources for showing this anomalous
enhancement, as well as characterizing achievable transformations in relation to their asymptotic state
transformations. Our results provide not only a general overview of the power of correlation in catalysts but
also a step toward the complete characterization of the resource transformability in quantum thermo-
dynamics with correlated catalysts.
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Introduction.—Quantum superposition, also known as
quantum coherence, is one of the most striking quantum
features and also a useful operational resource in quantum
metrology [1], quantum clock [2], and work extraction [3].
In quantum thermodynamics, the presence of coherence is
considered as the main source of difference between
semiclassical and quantum setups [4]. Under the presence
of a conserved quantity such as Hamiltonian, one is
restricted to the operations that cannot create coherence.
These operations, known as covariant operations, are
subject to many restrictions originating from the super-
selection rule [5–11], while preshared coherent states can
lift their operational capability [12–14]. This motivates us
to obtain a precise understanding of how one could quantify
and efficiently manipulate coherence, for which a resource-
theoretic approach has been proven useful [15–17].
Characterizing the possible state transformations under

given accessible operations is a central problem in any
operational setting with physical restrictions. To understand
the fundamental resource transformability, one needs to
consider an ancillary system serving as a catalyst, which
keeps its form at the end of the transformation. Several
possible scenarios for catalytic transformations have been
proposed. The first scenario considers an uncorrelated
catalyst τ that enables the transformation from ρ ⊗ τ to
ρ0 ⊗ τ [18–27]. Although uncorrelated catalysts can
enhance state transformation in some settings such as
entanglement theory [18,19] and quantum thermodynamics
[22,23], any pure uncorrelated catalyst fails to change the

power of coherence transformation by covariant operations
[28,29].
The second scenario extends the uncorrelated catalysts

by allowing correlation between the system and the
catalytic system at the end of the protocol, where we
consider a transformation from ρ ⊗ τ to ρ̃SC such that
TrC ρ̃SC ¼ ρ0 and TrS ρ̃SC ¼ τ, in which we call τ a
correlated catalyst [30–39]. The power of correlated
catalysts in covariant operations was discussed in terms
of coherence broadcasting, where it was shown that
correlated catalysts do not allow covariant operations to
create finite coherence from zero coherence [40,41].
These observations on the limitations of catalysts in

coherence transformation motivate us to investigate other
forms of catalysts that could enhance covariant operations.
An interesting setting was offered in quantum thermody-
namics. Lostaglio et al. [42] considered transformations
with multiple catalysts where correlation can be present
among the catalysts at the end of the transformation, i.e.,
from ρ ⊗ τCð0Þ… ⊗ τCðK−1Þ to ρ0 ⊗ τCð0Þ…CðK−1Þ while the
marginal state of τCð0Þ…CðK−1Þ on each catalytic system CðjÞ

remains as the original catalyst τCðjÞ . They showed that
quasiclassical transformations by thermal operations [43] in
this form are characterized solely by the free energy,
surpassing the enhancement provided by uncorrelated
catalysts [22]. Although the perfect reusability is generally
lost due to the correlation generated among the final state of
the catalysts, we follow the terminology in Ref. [31] and
call such a finite set of states⊗K−1

i¼0 τCðjÞ marginal catalysts.
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Characterizing the capability of covariant operations with
marginal catalysts will provide insights into an ultimate
coherence manipulability, as well as differences in opera-
tional capability of covariant operations and thermal
operations, the latter of which is a subclass of the former.
Although significant progress has been made for qubit
coherence transformation [29], the potential of marginal
catalysts in general coherence transformation has still been
left unclear.
Here, we show that correlation among catalysts can

completely remove the aforementioned limitations and
even provide unlimited power to coherence manipulation.
We prove that covariant operations assisted by marginal
catalysts enable any state transformations with arbitrary
precision, making a high contrast to coherence transfor-
mation with the other catalytic settings. Furthermore, we
discuss the underlying mechanism of this phenomenon
from the viewpoint of general resource theories of quantum
states [9,44–58]. We show that an arbitrary state trans-
formation is forbidden in a wide class of resource theories,
establishing the peculiarity of quantum coherence among
other quantum resources. We also relate single-shot cata-
lytic transformations to the asymptotic transformation in
general resource theories and exactly characterize feasible
state transformations for several important settings such as
quantum thermodynamics, entanglement, and speakable
coherence [59,60] with the resource measures based on the
relative entropy [61], offering them with an operational
meaning in terms of extended classes of single-shot
catalytic transformations.
Arbitrary state transformation.—For an arbitrary system

X with dimension dX, let DðXÞ be the set of quantum
states defined in X and HX ¼ PdX−1

i¼0 EX;ijiihijX be its
Hamiltonian where jiiX is an energy eigenstate. When
multiple systems X0; X1;…; XN−1 are involved, we con-
sider the total Hamiltonian over the systems in the additive
form as HX0…XN−1

¼ P
N−1
i¼0 HXi

⊗ Iī where ī refers to the
systems other than the ith system. Coherence between
eigenstates with distinct energies can be quantitatively
analyzed in the resource theory of asymmetry with U(1)
group [62]. Resource theories are frameworks accounting
for the quantification and manipulation of precious quan-
tities with respect to freely accessible quantum states and
dynamics under given physical settings [44]. The resource
theory of asymmetry considers states without coherence,
i.e., invariant under time translation, as free states and
covariant channels as free operations. We call a channel
E∶DðAÞ → DðBÞ covariant if its action is invariant under
time translation, i.e., e−iHBtEðρÞeiHBt ¼ Eðe−iHAtρeiHAtÞ for
any ρ and t. Importantly, covariant operations cannot create
coherence from incoherent states, making coherence a
precious quantum resource under the situation where only
covariant operations are accessible. Such a situation arises
when energy-conserving dynamics are concerned. It is
known that a map E is covariant if and only if it can be

implemented by an energy-conserving unitary USE satisfy-
ing ½USE;HSE� ¼ 0 as EðρÞ ¼ TrE½USEðρ ⊗ σÞU†

SE� where
ρ is an arbitrary state and σ is an ancillary incoherent state
[17,63]. If the ancillary state is restricted to the Gibbs state
in E, the channels in this form coincide with the thermal
operations [43]. Therefore, covariant operations can be
seen as an operation that focuses on the coherence part of
the resource in quantum thermodynamics, and clarifying
the difference in operational power between covariant
operations and thermal operations under the same catalytic
setting will help pinpoint the roles played by classical
athermality and quantum coherence [64].
We first formally define the marginal-catalytic covariant

transformation as follows. (See also Fig. 1).
Definition 1.—ρ ∈ DðSÞ is transformable to ρ0 ∈ DðS0Þ

by a marginal-catalytic covariant transformation if there
exists a constant K and a state ⊗K−1

j¼0 τCðjÞ in a finite-

dimensional system ⊗K−1
j¼0 CðjÞ and a covariant operation

E∶DðSCð0Þ…CðK−1ÞÞ → DðS0Cð0Þ…CðK−1ÞÞ such that

Eðρ ⊗ τCð0Þ… ⊗ τCðK−1Þ Þ ¼ ρ0 ⊗ τCð0Þ…CðK−1Þ

Tr
CðjÞτCð0Þ…CðK−1Þ ¼ τCðjÞ ; ∀ j; ð1Þ

where TrX̄ denotes the partial trace over the systems other
than X.
Marginal catalysts can be seen as an extension of a

catalytic transformation in the sense that the final state
keeps some properties of the initial state in an exact form.
Our main focus here is not to keep the repeatable pro-
perty of catalytic transformations but to investigate how
the state transformability could be enhanced by the non-
trivial change of the setting regarding the correlation.
Nevertheless, we can also motivate this specific setting
operationally; although the final catalyst as a whole is not
reusable in the next round, some parts of it can be reused
multiple times without the degradation of performance in
the desired state transformation. We discuss this partial
reusability of marginal catalysts in the Supplemental
Material [65].
Our main result shows that, despite the apparent limi-

tations in catalytic coherence transformation with uncorre-
lated and correlated catalysts [28,29,40,41], marginal
catalysts can provide extraordinary power—in fact, any
state transformation can be accomplished by a marginal-
catalytic covariant transformation with arbitrary accuracy.

FIG. 1. Schematic of marginal-catalytic covariant transforma-
tions. Each catalyst should get back to the original state, while it
can correlate with the system and other catalysts.
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Theorem 2.— For any ρ ∈ DðSÞ, ρ0 ∈ DðS0Þ, and ϵ > 0,
ρ can be transformed to a state ρ0ϵ ∈ DðS0Þ such that 1

2
kρ0 −

ρ0ϵk1 ≤ ϵ by a marginal-catalytic covariant transformation.
We sketch our proof in a later section, while deferring the

detailed proof to the Supplemental Material [65].
Theorem 2 implies that marginal catalysts can trivialize

coherence transformations, fully generalizing the result in
Ref. [29] established for the qubit state transformations to
those involving arbitrary Hilbert spaces of finite dimen-
sions. Notably, the result can be extended to the imple-
mentation of an arbitrary quantum channel (see the
Supplemental Material [65]).
Our result makes a high contrast to quantum thermody-

namics, in which state transformations by marginal-catalytic
thermal operations respect the ordering of the free energy
[42]. A related phenomenon is known as embezzlement [67],
where a negligibly small error in a catalyst enables an
arbitrary transformation. We stress that marginal-catalytic
transformations recover the marginal states exactly and are
fundamentally different from the mechanism of the well-
known embezzlement. In fact, as discussed below, the
trivialization of state transformations by marginal catalysts
is an unusual phenomenon, which shows a clear contrast to
the embezzlement seen in a broad class of resource theories
from entanglement [67] to quantum thermodynamics [22].
Comparison to other quantum resource theories.— It

may appear odd that one can create unbounded coherence
in the main system while keeping the reduced states of the
catalysts intact. To get insights into this phenomenon, let us
consider whether marginal catalysts could provide similar
enhancement in other quantum resource theories. Each
resource theory is equipped with a set F of free states and a
setOF of free operations [44]. For given these sets, one can
define a resource measure R, which evaluates zero for any
free state, i.e., RðσÞ ¼ 0 for any σ ∈ F, and does not
increase under free operations, i.e., RðEðρÞÞ ≤ RðρÞ for
any ρ and for any E ∈ OF. We particularly call it super-
additive if Rðρ12Þ ≥ RðTr2½ρ12�Þ þRðTr1½ρ12�Þ for any
state ρ12 ∈ DðS1 ⊗ S2Þ and tensor-product additive if
Rðρ1 ⊗ ρ2Þ ¼ Rðρ1Þ þRðρ2Þ for any ρ1 and ρ2.
The setup of catalytic transformations can be extended to

any resource theory. We say that ρ is transformable to ρ0 by a
correlated-catalytic free transformation if there exists a
finite-dimensional catalyst τ such that ρ ⊗ τ can be trans-
formed to ρ̃SC with TrCρ̃SC ¼ ρ0, TrSρ̃SC ¼ τ by a free
operation. Then, we can show that any resource measure
satisfying the above two properties remains a valid resource
measure under the two catalytic transformations involving
correlation. (See the Supplemental Material [65] for a proof).
Proposition 3.— For any given F and OF , suppose that

a resource measure R satisfies the superaddtivity and the
tensor-product additivity. Then, if ρ is transformable to ρ0
by a marginal-catalytic or correlated-catalytic free trans-
formation, RðρÞ ≥ Rðρ0Þ holds.
We remark that a related observation was made in the

context of quantum thermodynamics [31]. This puts a severe

constraint on the possibility of arbitrary state transformation.
If there exists even a single resource measure satisfying the
superadditivity and the tensor-product additivity, then mar-
ginal catalysts do not enable an arbitrary state transformation
as long as the resource measure is faithful, i.e., any nonfree
state takes a nonzero value. (See also Refs. [41,68] and
discussion below.) In fact, one can find such measures in
many resource theories, including quantum thermodynamics
[31], entanglement [69,70], and speakable coherence (super-
position between given orthogonal states) [59,60,71],
prohibiting the anomalous resource transformation with
marginal or correlated catalysts.
On the other hand, Theorem 2 and Proposition 3 imply

that there never exists a coherence measure that is super-
additive, tensor-product additive, and faithful. Our results
parallel previous observations; recent analytic proofs of the
violation of superadditivity of coherence measures employ
covariant operations that can amplify the sum of local
coherence indefinitely [41,68]. Examples of tensor-product
additive and faithful coherence measures include the
Wigner-Yanase skew information [16,72] and other metric-
adjusted skew informations [73,74], which indeed violate
the superadditivity [68,75,76]. More generally, it was
shown that any faithful measure of asymmetry cannot be
superadditive [41]. These results together with Theorem 2
and Proposition 3 indicate an intimate connection between
the anomalous coherence amplification and the violation of
the superadditivity of coherence measures.
Besides the necessary conditions established in

Proposition 3, we can also formulate sufficient conditions
using a general method of converting asymptotic trans-
formations to one-shot correlated-catalytic transformations
[36]. (See the Supplemental Material [65] for a proof.)
Proposition 4.— For any given F and OF , suppose that

OF includes the relabeling of the classical register and free
operations conditioned on the classical register. Then, if ρ is
asymptotically transformable to ρ0, there exists a free
transformation from ρ to ρ0 with a correlated catalyst as
well as marginal catalysts with an arbitrarily small error.
Proposition 4 shows that sufficient conditions for asymp-

totic transformations are directly carried over to single-shot
catalytic transformations. This particularly implies that, in a
general class of convex resource theories, the regularized
relative entropy measure provides a sufficient condition for
these single-shot catalytic transformations under asymptoti-
cally resource nongenerating operations, given the general-
ized quantum Stein’s lemma holds [46,77] (see also Ref. [78]
for the recent argument about the incompleteness in the proof
of the generalized quantum Stein’s lemma).
Combining Propositions 3 and 4, we arrive at the

complete characterizations of marginal- and correlated-
catalytic free transformations for various settings in which
the resource measures governing asymptotic transforma-
tions satisfy the tensor-product additivity and super-
additivity. These include several well-known relative
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entropy based measures, such as the free energy in quan-
tum thermodynamics with Gibbs-preserving operations
[36,54,58,79], the entanglement entropy with pure state
transformations under local operations and classical com-
munication [37,38,80], and the relative entropy of speak-
able coherence with several free operations [81–84].
Notably, Propositions 3 and 4 imply the equivalence in
the power of correlated and marginal catalysts for these
scenarios.
Correlated-catalytic covariant transformations.—

Although Theorem 2 reveals the exceptional power of
marginal catalysts, the power of correlated catalysts in
coherence transformation still remains elusive. In particu-
lar, when the initial state has nonzero coherence, neither
the coherence no-broadcasting theorem [40,41] nor
Proposition 3 prohibits preparing an arbitrary state. We
conjecture that a broad class of transformations is possible
with correlated catalysts under the presence of initial
coherence.
Conjecture 5 (Informal).— Let CðρÞ be the set of energy

differences for which ρ possesses nonzero coherence. Then,
for any states ρ and ρ0, ρ can be transformed to ρ0 with an
arbitrarily small error by a correlated-catalytic covariant
transformation if and only if every energy difference in
Cðρ0Þ can be written as a sum of integer multiples of energy
differences in CðρÞ.
The idea behind this is that correlated-catalytic covariant

transformations should be able to amplify and manipulate
the coherence of the initial state to realize any degree of
coherence for the energy differences that are combinations
of the initial ones with nonzero coherence. Thus, if these
energy differences cover those of the target state with
nonzero coherence, ρ should be transformable to ρ0 under a
correlated-catalytic covariant transformation.
In the Supplemental Material [65], we present a precise

statement of the conjecture and support it by proving the state
transformability under a slightly larger class of catalytic
covariant operations, together with several other observations.
Proof sketch for Theorem 2.— To prove our claim, it

suffices to provide a protocol that prepares a final state from
scratch with an arbitrarily small error. Our protocol makes
use of the procedure introduced in Ref. [29] as a subroutine,
which amplifies coherence in two-level systems using a
correlated catalyst by a small amount [Fig. 2(a)]. This can
particularly bring a coherent state ΣðηÞ ≔ ðI þ ηXÞ=2 with
η > 0, X ≔ j0ih1j þ j1ih0j to another coherent state Σðη0Þ
with η0 > η using a catalyst ΓðηÞ ≔ 1

2
fI þ ð ffiffiffi

3
p

η=2ÞXþ
½ð4 − η2Þ=6�Zg, and sequential application of this protocol
allows us to realize any coherent state on the X axis of the
Bloch sphere (excluding the pure state η ¼ 1) with mar-
ginal-catalytic covariant operations. Although the authors
of Ref. [29] claim that the whole sequence of amplification
is a correlated-catalytic covariant transformation, their
argument is, unfortunately, insufficient—in fact, the total
amplification process is marginal catalytic. We extend

detailed discussions about the two-level coherence ampli-
fication subroutine in the Supplemental Material [65].
Our protocol consists of three main steps (Figs. 2 and 3).

The first step creates small coherence in an ancillary
system, the second step amplifies this coherence and
constructs coherent resource states, and the third step uses
them to prepare the target state with a covariant operation.
Step 1: Creating small coherence [Fig. 2(b)]. We

introduce ancillary system R consisting of two-level sub-

systems fRigdS0−1i¼1 whose Hamiltonians reflect the spectrum
of HS0 as HRi

¼ ðES0;i − ES0;j⋆Þj1ih1jRi
where j⋆ ∈

f0;…; dS0 − 1g is an arbitrarily chosen integer independent
of i. We aim to prepare a coherent state ΣðηÞwith η > 0 for
each i. To this end, we introduce catalytic subsystems Ca

i

and Cb
i , both of which have the Hamiltonian HRi

. We
prepare catalysts τai ≔ ΣðηÞ in Ca

i and τbi ≔ ΓðηÞ in Cb
i

for some η with 0 < η < 1. We apply a single round of the

(a)

(c)

(b)

FIG. 2. Schematics for Steps 1 and 2. (a) One cycle of the two-
level coherence amplification subroutine. (b) We run the two-
level amplification protocol to increase coherence in Ca together
with Cb. We transfer this increased coherence to R and restore the
state in Ca to the original form. (c) We amplify the coherence
generated in R with many rounds of the two-level amplification
protocol.

(a) (b)

FIG. 3. Schematics for Step 3. (a) Multiple copies of the
resource state in R created in Step 1 constitute a state with the
binomially distributed energy statistics. (b) We use these coherent
states as ancillary coherent resource states to assist the energy
transition required for the desired unitary V. The error on the
realized unitary from the desired one, V, is quantified by the
overlap between the original resource states and the final resource
states subject to an energy shift due to the backreaction, which
can be made arbitrarily small by creating a sufficiently large
resource state. These resource states are discarded at the end of
the protocol.

PHYSICAL REVIEW LETTERS 128, 240501 (2022)

240501-4



two-level coherence amplification over τai ⊗ τbi , which
increases coherence in Ca

i by a small amount while keeping
the reduced state on Cb

i unchanged. We transfer the
increased amount of coherence from Ca

i to Ri by applying
a covariant unitary over RiCa

i , creating a nonzero coherence
in Ri while bringing the reduced state on Ca

i back to τai .
Step 2: Amplifying coherence [Fig. 2(c)]. We amplify

this nonzero coherence generated in Ri by the two-level
coherence amplification using another set of catalysts

prepared in ⊗K−1
j¼0 CðjÞ

i with a large enough integer K.

This prepares a state close to jþi ≔ ðj0i þ j1iÞ= ffiffiffi
2

p
in Ri.

Step 3: Prepare the target state (Fig. 3). We repeat Steps 1
and 2 for Lð≫ 1Þ times to prepare a state close to jþi⊗L

Ri
for

each i, which is a superposition of energy eigenstates with
weights according to the binomial distribution. By employ-
ing these states as ancillary coherent resource states, we can
implement any unitary on S0 with arbitrary accuracy by a
covariant operation [5,7,12–14,85–87]. Since any pure
state on S0 can be prepared by applying an appropriate
unitary to an incoherent state jj⋆iS0 , and any mixed state is
realized by a probabilistic mixture of pure states, we can
obtain the total state whose reduced state on S0 is ρ0ϵ.
Finally, the correlation between S0 and the catalytic system
can be removed by using the technique employed in
Ref. [30], where we start with the final state in another
catalytic system and swap it with the marginal state
created in S0.
The accuracy of the whole protocol is determined by the

errors in preparing highly coherent resource states in Step 2
and in approximating unitary in Step 3, both of which can
be made arbitrarily small using finite-size catalysts, ensur-
ing any target error ϵ > 0. Also, since the required catalysts
except for the final step in removing the correlation do not
depend on the target state, they construct a universal family
of catalysts applicable to any state transformation if an
arbitrarily small correlation is allowed between the main
system and catalytic systems.
Conclusions.—We studied catalytic state transformation

with marginal catalysts, which allow correlation among
multiple catalyst states at the end of the transformation. We
showed that marginal catalysts provide exceptional power
to coherence transformation, enabling any state transfor-
mation with arbitrarily small error. To elucidate the
peculiarity of how quantum coherence behaves in catalytic
transformations, we compared it to other types of quantum
resources by formulating conditions for catalytic state
transformations from the perspective of resource quanti-
fiers. We showed that such an anomalous state trans-
formation is impossible in resources such as thermal
nonequilibrium, entanglement, and speakable coherence,
for which we exactly characterized state transformability
with correlated and marginal catalysts in terms of relative
entropy resource measures.
An intriguing future direction is to prove or disprove the

conjecture on the power of correlated catalysts in coherence

transformation, which will provide insights into another
interesting problem in quantum thermodynamics, that is,
whether the free energy solely determines the state
transformability by thermal operations with correlated
catalysts if an initial state has finite coherence.
Answering this question will pave the way toward a
fully general operational characterization of single-shot
quantum thermodynamics.
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