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Granular packings display a wealth of mechanical features that are of widespread significance. One of
these features is creep: the slow deformation under applied stress. Creep is common for many other
amorphous materials such as many metals and polymers. The slow motion of creep is challenging to
understand, probe, and control. We probe the creep properties of packings of soft spheres with a sinking
ball viscometer. We find that in our granular packings, creep persists up to large strains and has a power law
form, with diffusive dynamics. The creep amplitude is exponentially dependent on both applied stress and
the concentration of hydrogel, suggesting that a competition between driving and confinement determines
the dynamics. Our results provide insights into the mechanical properties of soft solids and the scaling laws
provide a clear benchmark for new theory that explains creep, and provide the tantalizing prospect that
creep can be controlled by a boundary stress.
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The mechanical properties of athermal particle packings
are of fundamental and applied interest and have various
nontrivial features. Many systems such as sand, foams,
emulsions, and other particulate media have a “rigid” phase
that can bear a finite amount of stress [1–10]. However, the
definition of rigid is not always clear, for example, because
of slow mechanical motion or creep in thermally driven
amorphous materials [11]. Packings of inelastic particles
might be considered rigid, yet they also display slow
relaxation dynamics when deformation is imposed, even
in the absence of thermal fluctuations; they are considered
to self-fluidize [12,13]. Alternatively, when stress is
imposed, granular packings also display very small mag-
nitude logarithmic aging [14,15]. Hence, the origin of creep
in athermal packings is obscure. In this Letter we show that
athermal soft sphere packings display readily observed,
large amplitude creep behavior when the applied stress of
the intruder and the packing characteristics are controlled
systematically. Observed creep behavior is diffusive in
time, robustly observed under different experimental con-
ditions, and depends exponentially on the applied intruder
stress. Our work shows that creep behavior can be
systematically studied, which opens the door to finding
the new physics needed to understand the slow flow
behavior of (a)thermal particle packings. Specifically,
our work suggests that creep features are set by a balance
of applied and confinement stress and originate in particle
or contact level details.
Microscopic details are always relevant to the under-

standing of the properties of soft solids. For example, it is
known that constraining the various internal degrees of
freedom of particles leads to rigidity in idealized structures
[3,16], e.g., where contacts proliferate. However, the

properties of the rigid state also depend on the microscopic
details of the particle contacts and adhesion, size, aspect
ratio, boundary conditions, sample preparation, and the
way the rigidity of the assembly is probed. Controlling for
all these variables is a huge challenge and a framework to
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FIG. 1. (a) Photo of the experimental setup with various parts
indicated. δ is the penetration depth measured from a reference
point (dashed line) which is always below the surface of the
packing. (b) Penetration depth δ as a function of time for various
hydrogel concentrations and added weights. Error bars indicate
measurement uncertainty on the position. (c) δ2 dynamics
normalized with fitted D values (see text) for all penetration
tests. The dash-dotted line indicates a slope of unity.
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understand rigidity is lacking in no small part due to the
experimental challenges in systematically probing creep
behavior. We therefore consider the classic viscosity test of
a sinking intruder of known shape and size and tunable
effective density to probe the mechanical properties of
packings of soft particles.. The medium we use is a dense
packing of millimeter sized hydrogel spheres. In essence,
we use the principles of a falling bob viscometer to
study the properties of hydrogel particles packings.
Such viscometers are commonly used to obtain estimates
of the viscosity of Newtonian fluids [17], or non-
Newtonian fluids [18,19]. Viscoelastic fluids such as
Boger fluids have been treated extensively, yet also
“simple” yield stress fluids have been studied using sphere
intrusion [20–22].
Unlike their microgel equivalents [23], saturated milli-

meter sized soft hydrogel particles do not easily change
volume under small pressures [24–26] and can be easily
confined to a constant pressure or volume. They are known
to have non-Newtonian flow behavior, even sans submer-
sion [27]. Hydrogels are virtually frictionless [28,29] when
fully immersed in water. Even so, a packing of frictionless
spheres is known to have a yield stress [22,28,30], signal-
ing its rigid feature. The macroscopic size of our system
was selected to enable accurate mechanical control.
The intruder is much larger than the particle scale and
thus provides a coarse-grained measure of the packing
mechanics.
Principle creep phenomenology.—Spheres sinking into a

non-Newtonian fluid typically exhibit behavior ranging
from unsteady motion to arrest. Our experiments yield
qualitatively different behaviors. (i) The sinking dynamics
of the sinking sphere in the hydrogel particle packing does
not stop [31]; it creeps with reproducible power law time
dependence. It is important to distinguish between the
“creeping flow” limit of inertia free dynamics, and creep
flow, which is slow, inertia free motion that is nevertheless
not steady due to aging [32]. (ii) The creep becomes
exponentially dependent on the applied stress [33,34] at a
critical fraction of hydrogel material per unit volume ρc.
(iii) Increasing the hydrogel concentration further, we find a
transition from creep to creeping sinking behavior at a
hydrogel concentration ρl while retaining its exponential
stress dependence.
Experiments.—The experimental apparatus is presented

in Fig. 1(a). We use an acrylic cylinder which contains a
prepared packing of hydrogel spheres. The packing of
hydrogel spheres can be adjusted by adding small measured
amounts of dry hydrogel powder. An intruder is guided into
the packing by an attached rod, that serves as a measure to
track the penetration δðtÞ into the medium. The rod also
supports a tray, to which calibrated masses are added. At
the start of each experiment the rod is held fixed using a
clamp. The initial position of the intruder δ0 is with the top
of the intruder positioned totally immersed, 5 mm below

the sample surface. The experiment is started by releasing
the clamp. The total stress σ exerted by the intruder on the
packing is computed using the total weight of intruder, rod,
tray and added mass, divided by the cross section of the
intruder. Note that this is a normal stress, computed with the
cross section of the intruder. Details regarding the experi-
ment can be found in the Supplemental Material [35],
which describes the methods to prepare the samples and
some other details and includes [36–38].
Creep features.—The salient feature of the mechanics of

the weak hydrogel particle packings is that they exhibit
power law creep over a wide range of hydrogel concen-
trations and applied stress. Results for δðtÞ ¼ ½Dðρ; σÞt�0.5
from sphere intrusion dynamics are shown in Fig. 1(b) for
various σ; ρ:D here is a diffusionlike constant with units of
m2=s that sets the penetration speed. The unsteady pen-
etration dynamics is present in all experimental runs and
persists for hours. We focus first on the sphere intrusion
with no added weights in the tray which corresponds to a
constant stress of approximately 360 Pa. The square root
time dependence of δ is evidenced by plotting δ2ðtÞ
normalized by the fitted Dðρ; σÞ as shown in Fig. 1(c).
In fact we obtain Dðσ; ρÞ from a linear fit to δ2ðtÞ. All
the data collapse onto a straight line with slope 1. See
Supplemental Material [35] for a logarithmic comparison
of the same data. It should be noted that the distance over
which creep persists is up to 4 times the intruder size. The
change in creep behavior at ρc is readily observed in DðρÞ.
Below a critical hydrogel concentration of 6.82 g=L, creep
behavior exists with the same power law time dependence,
yet D is independent of ρ and can be indicated by D0.
Above ρc, D decays exponentially with ρ as visible in
Fig. 2, where we can write

D ¼ D0 exp ½−ðρ − ρcÞ=ρs�: ð1Þ
Here ρs is a decay constant that we fitted to the data. We
find that for the sphere, ρs ≈ 1=13 g=L. ThisDðρÞ behavior
is also found for cylindrical intruders, for which δðtÞ also
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FIG. 2. At constant stress, we measure DðρÞ for the 23 mm
sphere (blue circles) and the 30 mm cylinder (red squares) at
constant sinking stress σ of having no weights in the tray. The
dash-dotted line indicates regime of density-independent creep;
the solid line indicates density dependent creep intrusion
dynamics. The dotted line indicates ρc.
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has a square-root fit. The constant D regime is more
extensively surveyed with cylindrical intruders; for the
30 mm cylinder ρs ≈ 1=26 g=L. Independent measure-
ments with a larger cylindrical intruder show similar
exponential DðρÞ behavior (not shown). Remarkably, we
thus see that a packing of hydrogel spheres behaves as a
soft solid that shows creep over the entire range of ρ < ρl
studied. The creep is reminiscent of thermally activated
materials such as polymers and glasses but also found in
harder particulate media [14,39–42].
Intruder stress dependence.—Increasing the applied

stress σ by adding weights to the tray increases the
penetration speed. We find an exponential enhancement
of D0 with stress, as shown in Figs. 3(a) and 3(b). In this
exponential dependence, a stress scale σs quantifies how
creep changes with applied stress. For both spheres [panel
(a)] and cylinders [panel (b)], D increases exponentially
with the same stress scale σs ≈ 35 Pa and indeed the data
collapse of D=D0 expðσ=σsÞ is excellent, especially above
ρc. Normalizing D by D0 expðσ=σsÞ does not scale out the
diffusion amplitude entirely. We therefore conclude that the
overall prefactor D0 can be described as

D0 ¼ Dσ expðσ=σsÞ: ð2Þ

Here Dσ is a geometry dependent factor with Dσ ≈ 3.5 ×
10−3 m2=s for the spheres andDσ ≈ 9 × 10−4 m2=s for the
cylinders. As the sphere is only 1.5 times smaller than the
sphere, we expect the remaining difference in Dσ to arise

from geometric effects: the flat face of the cylinder pushes
small numbers of particles along, effectively changing
its shape.
Interpretation.—The remarkable stress dependence

observed by varying the effective mass and the hydrogel
concentration suggests a mechanism connects the two
effects. Indeed, the scaling for D in the regime ρc < ρ <
ρl is

D ¼ Dσ exp

�
σ

σs
−
ðρ − ρcÞ

ρs

�
: ð3Þ

It seems more natural to see the diffusion constant as a
balance of two competing stresses. First, ρc is intruder
shape independent, so it is a property of the packing. We
observe that the fully hydrated, swollen hydrogel particles
start to protrude through the water surface when the
hydrogel concentration has reached ρc. We interpret ρc
as the hydrogel particle concentration at which the number
of swollen hydrogel spheres fills the available volume of
water. When dry hydrogel powder is added to an already
completely filled liquid volume of water, particles swell to
a hydrated state and protrusion increases. Surface tension
then becomes relevant as the confining stress for the
hydrogel particles. The surface tension stress is 2γ=d with
γ the surface tension and d the average particle diameter,
and yields about 100 Pa. This value is larger than the
measured value for the geometry independent σs but closer
to this value than the other stress scale in the system:
hydrostatic pressure. With 6 g/L hydrogel, where the
maximum hydrostatic pressure is Δρgh ≈ 12 Pa with h
the packing height of about 20 cm. We conclude that creep
speed appears to be set by the ratio of driving stress from
intruder mass and the confining stress from the surface
tension. Preliminary experiments suggest that adding a
surfactant can increase D at given ρ, but more work is
needed to quantify these effects.
Origin of geometry dependent prefactor Dσ.—On

dimensional grounds, in the creep regime, since Dσ has
the units of a diffusion constant m2=s, this implies it will
depend on a characteristic stress scale σ of the intruder, on
a density or concentration ρ and a length scale L via
Dσ ∝ L

ffiffiffiffiffiffiffiffi
σ=ρ

p
. σs is universal, hence a natural stress scale,

the more so since the hydrostatic pressure scale is both too
small and depth dependent and thus unlikely to produce the
observed creep dynamics. While our experiment is limited
in the exploration of different sizes, shapes, and material
densities, we find that ρs andDσ are intruder dependent and
thus likely related. However, the value of ρc, ρs requires
careful interpretation, as the dry hydrogel weight per unit of
volume of water is a proxy for the collective dynamics of
the swollen hydrogel particles. Having established the
values of ρ, we can estimate L ≈Dσ

ffiffiffiffiffiffiffiffiffiffiffi
ρs=σs

p
and find that

L ≈ 1–2 mm, which is equal to the particle size. The
appearance of this length scale is consistent with the

FIG. 3. Varying the intruder stress on the packing, (a),(c)
Dðρ; σÞ for the 23 mm sphere and (b),(d) for the 30 mm cylinder.
(a),(b) The exponential intruder stress dependence. The dash-
dotted line is D ∝ expðσ=σsÞ. Color scale indicates the hydrogel
concentration. In (c),(d) we rescale the data with Eq. (2). Color
scale indicates the applied stress σ in Pa. Line styles are identical
to Fig. 2.
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surface tension argument above, which would indeed
include surface tension parameters in the effective prefactor
Dσ . The relevance of surface tension for the creep behavior
also provides an interpretation for the geometry dependent
ρs: this constant is related to the amount of Reynolds
dilatancy the packing of hydrogel particles experiences
under the motion of the intruder. ρs for the cylinder is thus
also much smaller. It is interesting to observe the creep and
its exponential dependence on both ρ and σ. Preliminary
flow field visualizations rule out an emerging and com-
pressing solidlike region underneath the intruder; the flow
field during penetration is known to be limited around the
sphere [22,43]. Moreover, creep is consistently observed
for both intruder shapes. We postulate that the soft hydrogel
packing acts as an athermal glass former [44] in which any
motion of the intruder destabilizes the packing and induces
fluidization, which gives rise to motion. The self-fluidiza-
tion will be suppressed under larger confining pressure, or
enhanced when the driving pressure is higher. We cannot
probe the limit σ → 0 so we are unable to verify whether
the self-fluidization persists to the point where the material
becomes a “solid,” yet if Eq. (2) extends to infinitesimal
stress levels, our observations indicate that frictionless,
deformable particles allow minute mechanical fluctuations
to liquefy a packing of jammed particles. The antithixo-
tropy [45] or aging phenomenon observed fits remarkably
well in the framework from Derec et al. [36], with an aging
exponent α ¼ 3 (see Supplemental Material [35]).
Robust σs dependence in viscous sinking.—The diffusive

penetration dynamics does not extend to arbitrarily large
hydrogel concentrations, but the stress dependent dynamics

does. At a transition hydrogel concentration ρ ¼ 7.15 g=L
we observe a mixed sinking behavior that cannot be
described by unsteady creep with a single exponent.
Upon increasing ρ > 7.15 gr=L we enter a third regime.
In this regime, the sphere sinks at a constant speed. Typical
δðtÞ behavior is shown in Fig. 4(a) and contrasts starkly
with the creep behavior in Fig. 1(b). Here we fit δ ¼ vst and
using Stokes drag law we find that vs ¼ 4R2gΔρ=18ηeff ,
with R the intruder radius, ηeff the effective viscosity of the
hydrogel packing and Δρ the density difference between
the intruder þ weights and the water-hydrogel mixture. The
ηeffðρÞ dependence is weak but a slowdown with increasing
hydrogel concentration can be observed, as can be seen in
Fig. 4(b). In a simple fluid the speed of intrusion varies
linearly with added mass and hence σ, but the dependence
on stress is significantly stronger, as is Dσ . We clarify this
in Fig. 4(c), where we show various vsðσÞ at constant
ρ ¼ 7.45 g=L. Again, an exponential dependence of the
effective viscosity on the stress can be seen. The reference
line shown follows Eq. (2) and has the same σs as used for
describing D below ρl suggesting a robust stress depend-
ence across regimes.
Conclusions.—By varying the intruder stress and amount

of hydrogel particles in a fixed volume of water, we find
that creep in athermal soft particle packings can be
systematically observed and depends exponentially on
the intruder stress under a wide range of conditions. We
find three regimes of sinking dynamics: (i) A regime with
power law intrusion creep with an exponent of 0.5 for the
penetration versus time dynamics, in which the hydrogel
concentration does not affect the sinking speed prefactor.
(ii) A second regime with the same power law intrusion
creep in which the speed is exponentially dependent on the
packing and the distance to a critical volume fraction.
(iii) A regime of constant sinking rate. The observations
are robust for different intruder shapes. We interpret the
observed exponential stress dependence from a balance of
driving stress and confinement pressure induced by surface
tension and link the observed power law creep to a different
type of aging than commonly found in logarithmic creep
experiments. Our results provide a clear challenge for
numerical and theoretical work. The observed exponential
stress dependence provides a test for existing frameworks
of particle packing mechanics and point towards a rel-
evance of understanding particle contact level physics
and boundary conditions on the fluctuations in granular
packings to arrive at coarse grained level descriptions of
disordered particulate media. Our extensive set of exper-
imental results prompt several questions: which mechanism
allows for the creep phenomenon? What sets the observed
stress scale? Is a boundary stress indeed responsible for the
local flow behavior? Our data provide a benchmark for
perspectives proposed for mechanics in athermal packings
[46–49] and will stimulate new experimental and theoreti-
cal work in the field.
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FIG. 4. (a) Above ρl, penetration depth δ as a function of time
for various hydrogel concentrations at constant stress σ ¼
358 Pa. (b) the effective viscosity as derived from the sinking
speed vs. Color indicates ρ. The dash-dotted line shows a ηeff ∝
1=ð7.5 − ρÞ divergence as guide to the eye. (c) vs as a function of
stress σ. At fixed ρ ¼ 7.45 g=L, vs is approximately exponential;
the dash-dotted line is given by vs ∝ expðσ=σsÞ. σ is indicated by
the color scale, in Pa. Error bars indicate the 95% confidence
interval of the fit.
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