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Atomically thin semiconductors can be readily integrated into a wide range of nanophotonic
architectures for applications in quantum photonics and novel optoelectronic devices. We report the
observation of nonlocal interactions of “free” trions in pristine hBN=MoS2=hBN heterostructures coupled
to single mode (Q > 104) quasi 0D nanocavities. The high excitonic and photonic quality of the interaction
system stems from our integrated nanofabrication approach simultaneously with the hBN encapsulation
and the maximized local cavity field amplitude within the MoS2 monolayer. We observe a nonmonotonic
temperature dependence of the cavity-trion interaction strength, consistent with the nonlocal light-matter
interactions in which the extent of the center-of-mass (c.m.) wave function is comparable to the cavity
mode volume in space. Our approach can be generalized to other optically active 2D materials, opening the
way toward harnessing novel light-matter interaction regimes for applications in quantum photonics.
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Monolayer crystals of transition metal dichalcogenides
(TMDs) are ideally suited as the active material for solid-
state cavity quantum electrodynamics (cQED) investiga-
tions [1,2]. They have very large exciton binding energies
≥ 100 meV [3,4], linewidths close to the homogeneous
limit when suitably encapsulated by hexagonal boron
nitride (hBN) [5–7], and strong optical absorption strengths
close to the excitonic transitions exceeding ∼10% per
atomically thin layer [8]. In addition, 2D materials can
be readily attached to a wide range of substrates [9],
making them ideally suited for hybrid solid-state cQED
experiments [10]. Indeed, recent work has reported strong
light-matter coupling for monolayer TMDs using diverse
photonic resonator geometries including planar open-fiber
cavities [11], photonic crystals [12–14], and nanoplas-
monic TAMM resonators [15–17]. However, the direct
coupling of 2D semiconductors to quasi 0D nanophotonic
modes while preserving excellent excitonic properties and
high cavity quality (Q) factor has remained a challenge.
Most commonly, nonencapsulated TMD monolayers are
stacked directly on top of prefabricated photonic structures
using pick-and-place assembly [18–21]. In this case, local
strain arising from the nonplanar substrate, and spatially
varying local dielectric screening result in a disordered
energy landscape that perturbs the excitonic properties of
2D semiconductors [7,22]. While dielectric disorders can
be partially mitigated by full hBN encapsulation [5–7], this

approach results in a trade-off between the strength of the
disorder potential and the cavity-TMD coupling strength,
by moving the TMD monolayer away from the antinode of
the cavity field [21].
Besides improving the optical properties of TMDs, full

hBN encapsulation also enhances the transport properties
of excitons [5–7,23]. Indeed, markedly contrasting temper-
ature dependencies of the exciton transport properties have
been observed in hBN-encapsulated and bare TMD mono-
layers [24,25]. In quasi 0D nanocavities, exciton motion is
expected to play an important role; light-matter couplings
can enter the “nonlocal” regime [26] in which excitons
sample different spatial regions of the cavity mode having
dissimilar electric field amplitudes, during their lifetime.
This is in strong contrast to the typical situation such as the
III-V quantum dots, where the emitter size is much smaller
than the emission wavelength and excitons are stationary,
such that electric field is constant across the exciton wave
function. In typical case, light-matter interaction is gov-
erned by the dipole approximation with a strength d · EðrÞ
determined by the electron-hole dipole moment d and the
local electric field EðrÞ at the emitter position r. In 2D
materials, the c.m. motion of free excitons spatially extends
over μm length scales [27], much larger than the emission
wavelength. Therefore, EðrÞ is no longer constant during
the exciton lifetime and the exciton-photon interaction
enters the nonlocal regime [26,28]. Here, the light-matter
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interaction is determined by an interplay in spatial between
the cavity mode field and the c.m. wave function of the
exciton [26].
Here, we observe nonlocal light-matter interactions in a

hBN=MoS2=hBN=Si3N4 hybrid photonic crystal nanocav-
ities. Our optimized cavity structure solves the trade-off
problem by integrating the hBN=MoS2=hBN as a func-
tional dielectric part of the cavity structure rather than an
attachment. Therefore, the high excitonic quality and the
strong cavity-MoS2 overlap are achieved simultaneously.
Our nanofabrication approach with encapsulated 2D mate-
rials provide cavity mode Q factors ≥ 104, comparable to
the best active III-V and silicon nanocavities explored for
solid-state cQED experiments [29–31]. Optical spectros-
copy performed as a function of lattice temperature shows
that light-matter interactions between the cavity modes and
spatially extended free trions (TXs) operate in the nonlocal
regime [26,28]. The interaction strength is shown to be
consistent with the shrinking c.m. wave function of TX as
temperature increases. Our Letter demonstrates the signifi-
cance of both optical and transport properties in hybrid 2D-
material cQED systems, and the sensitivity of nonlocal
effects to the environment. These results provide ways to
the efficient control of exciton-photon interactions and
enable hybrid 2D-material cQED systems for novel opto-
electronic and quantum photonic devices.

The cavity structure is presented in Fig. 1(a) and the
typical electric field distribution calculated using finite-
difference time-domain methods for the first three modes
(M1–M3) are presented in Fig. 1(b). Usually both the
diameter of air holes and the periodicity decrease linearly in
the cavity center for optimized nanobeam cavities [20,21].
Here, to simplify fabrication processes all nanoscale
trenches were chosen to have the same width of
140 nm, but their separation ai (i ∈ 0; 1; 2…) follows a
Gaussian function ai=a ¼ 1 − A · exp½−i2=ð2σ2Þ�, where a
is the lattice constant and A ¼ 0.1, σ ¼ 4 define a smoothly
varying photon confinement for high Q factors [32].
The key fabrication steps are outlined in Fig. 1(c), where

the images of sample A (a ¼ 270 nm) are presented with
cavities marked by Ai (i ∈ 1; 2…). Fabrication began by
etching nanoscale trenches into Si3N4. Subsequently, large
(≥ 104 μm2) 2D flakes were exfoliated [33] before being
assembled into a hBN=MoS2=hBN heterostructure on top
of the etched trenches using a viscoelastic dry transfer
process [34]. The samples were completed in a second
etching step that divides the heterostructure into multiple
parallel nanocavity beams with a width dy [Fig. 1(d)] that
tunes the frequency of the cavity modes, followed by a final
wet under-etch to produce freestanding nanobeams. The
hBN=MoS2=hBN heterostructure was only etched in
the second etching and is not perforated, which retains

FIG. 1. (a) Schematic of cavity structures. (b) Maps of jEj2 distribution of three modes M1-3. (c) Images of sample Awith cavities A1–
A21, recorded at different stages of the fabrication process: (i) after first etch (close up in inset), (ii) after stacking the TMD
heterostructure, and (iii) following the second etch to define nanobeams. Here, the thickness of top (bottom) hBN is 15 (55) nm.
(d) Image of one typical cavity (tilted 45°). (e) Room temperature PL spectra of cavities A2–A12 (arrow in (c)iii). (f),(g) Experimental
and calculated cavity mode energy (f) and Q factors (g). The refractive indexes used in the calculation are nSi3N4

¼ 2.00 and
nhBN ¼ 1.82. The black scale bar in (c) is 10 μm and the white scale bar in (c),(d) is 100 nm.
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pristine excitonic properties of the MoS2 monolayer and
greatly reduces disorder-induced optical losses. Detailed
design and fabrication is provided in the Supplemental
Material [35].
Figure 1(e) shows typical photoluminescence (PL)

spectra of the fundamental mode M1 from cavities A2–
A12 with varying dy. Luminescence from the MoS2 filtered
through the cavity mode is observed when exciting using a
532 nm constant wave laser. The laser spot area is 1 μm and
the power density is 28.8 kW=cm2. We observe cavity
linewidths ℏγC ∼ 200 μeV, close to our resolution limit
ℏγres ¼ 130 μeV. Thus the measurement of exactQ factors
is limited by the spectral resolution. TheQ factor estimated
by deconvolution Q ¼ ωC=ðγC − γresÞ [59], where ωC is
the cavity mode frequency, are universally ≥ 104 (for
details, see the Supplemental Material [35]). These values
are more than 1 order of magnitude larger than hBN
cavities hitherto reported [60–62] and comparable to
state-of-the-art III-V photonic crystal structures [29,30].
The observed functional dependence of the cavity energies
andQ factors on the extensive geometry are in good accord
with simulated results as shown in Figs. 1(f) and 1(g). The
experimental Q factors are smaller than theoretical pre-
dictions due to the disorder in fabrication.
We continue by exploring the coupling between the

MoS2 monolayer and the fundamental M1 mode in our
high-Q nanocavities. In all the cavities investigated, the
emission from cavity mode could only be observed when
M1 is “red detuned” from TX (Δω ¼ ωTX − ωM1 ≥ 0).
This can be clearly seen in Fig. 2, where the PL spectra is
measured from cavities B1–B8 on another sample B
[Fig. 2(a)], and from the cavity B2 where Δω is mainly
tuned via the temperature-dependent ωTX [Fig. 2(b)]. The
bare cavity mode is also slightly tuned by the temperature
but much less compared to ωTX (for full details, see the
Supplemental Material [35]). In both sets of data, emission
from the M1 mode quenches as Δω < 0. We note that this
observation is distinct from previous studies of nonencap-
sulated monolayers attached to prefabricated nanocavities,
where emission from cavity modes could be readily
observed even when its energy is higher than the neutral
exciton (X0) [20]. We traced this phenomenon to the
combined impact of reabsorption of cavity photons by
the MoS2 monolayer for long photon lifetimes (highQ) and
the continuous energy spectrum of free excitons [63]. This
differs significantly from the situation with discrete quan-
tum emitters [63], such as quantum dots, due to the
increased phase space of exciton states with nonzero
momentum that can be accessed via inelastic scattering
for blue detunings (Δω < 0). We estimate the impact of
enhancing the photon lifetime in the high-Q cavity. Taking
a typical absorption coefficient of α ¼ 2.8 × 104 m−1 [64],
we estimate that reabsorption of cavity photons by the
MoS2 becomes significant for αðQ=ωCÞðc=nrÞ ≫ 1 where
Q=ωC is the cavity photon lifetime, c is the speed of light,

and nr is the refractive index. For the maximum cavity-
TMD overlap, we estimate Q ≫ 900 to denote the limit
beyond which reabsorption begins to limit the exciton-
photon interaction. Our cavity Q exceeds this estimated
threshold and, moreover, the MoS2 monolayer is inserted
close to the antinode of the cavity mode. Thus, the cavity
mode quenches for blue detunings Δω < 0.
To analyze the coupling of TXs to the high-Q cavity

mode, we extracted the peak energy and linewidth of the
cavity mode and TX from the spectra in Fig. 2(b) by multi-
Lorentz fitting, e.g., the spectra at 95 K presented in
Fig. 3(a). Since the interaction is at low excitation level
without nonlinearity (for full details, see the Supplemental
Material [35]), the Jaynes-Cummings model is used to
model the cavity-TX interaction [21]. Hereby, when the
cavity-TX interaction is weak, the interaction strength g can
be calculated from the linewidth of cavitylike polariton γ−,
the energy detuning (Δω0), and linewidth difference (Δγ0)
between the excitonlike and cavitylike polariton branch by
γ− ¼ γC þ g2Δγ0=ðΔω02 þ 1=4Δγ02Þ. The experimental
extracted parameters are presented in Figs. 3(b) and 3(c),
and the results of g are summarized in Fig. 3(d) as the
central results of this Letter. First, the values of g are far
smaller than that expected of a strong coupling; thus, the
small g approximation in the calculation is right.
Furthermore, the experimentally determined g (black dots)
is found to be highly nonmonotonic as the temperature T
increases (detuning reduces): g first reduceswith increasing
T before increasing rapidly—a behavior that can be
accounted for by nonlocal light-matter interactions of
mobile excitons in the hybrid nanocavity [26,28]. This
situation can occur, e.g., for plasmonic systems with tightly

FIG. 2. (a) PL spectra recorded from sample B (a ¼ 250 nm)
with cavities B1–B8 (dy ¼ 530–460 nm) at 11 K. Excitation
power is 1.4 kW=cm2. Emission centered at 1.93 (1.90) eV is
X0 (TX). X0 has a linewidth ∼5 meV, indicative of the high
excitonic quality [6]. The sharp peaks on cavities B1–B6 at the
red side of TX are the M1 modes. The nonmonotonic shift of
M1 in B1–B2 reflects inhomogeneity of the hBN thickness.
(b) Temperature-dependent PL spectra recorded from cavity B2
with excitation power 2.1 kW=cm2. As T increases, the M1 peak
intensity first continuously decreases as the exciton emission
decreases, but then suddenly disappears after reaching the blue
side of TX (T > 131 K).
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confined electromagnetic modes [65–67] or in situations
where the exciton wave function has a large spatial extent,
e.g., large quantum dots [68]. Additionally, it can be
observed that the γ− predicted by a constant g0 of
4 meV [red dashed line in Fig. 3(c)] is clearly different
to the experimental observation; thus, a constant g0 is
obviously not our case.
We continue to explain how this behavior is expected in

the nonlocal regime of light-matter interactions. In the local
regime, EðrÞ, which usually involves eik·r (k is the wave
vector), is approximately constant within the exciton wave
function. This translates to k · r ≪ 1 for all r within the
electron and hole wave functions, whereas nonlocal regime
occurs when k · r is non-negligible [26,28,68]. The free
excitons in the hBN-encapsulated MoS2 are generated
locally but their c.m. samples’ positions having different
local cavity field (k · r ≫ 1) before recombining. Hereby,
TXs were modeled in the weak confinement regime
(effective Bohr radius ≪ the spatial extent of the c.m.
wave function) for which the total wave function is
separable into components arising from the c.m. motion
χCMðRÞ and internal dynamics of the e-h pair χrelðr0Þ,
respectively. R ¼ ðmere þmhrhÞ=ðme þmhÞ corresponds
to the c.m. motion and r0 ¼ re − rh accounts for the internal
relative motion of the e-h pair [4,26]. Because of the

large exciton binding energy in hBN-encapsulated TMDs
[3,4,69], χrelðr0Þ only extends over a few nanometers [1,4].
Moreover, it is expected to be fully independent of temper-
ature since the exciton binding energy is ≫ kB · T. In
contrast, due to exciton-phonon coupling, the spatial extent
of the c.m. wave function has a negative temperature rela-
tion in hBN-encapsulated TMDs [24,25,70]. Generally
acoustic photons result in LTX that varies sublinearly
with 1=T, while optical phonons result in LTX that varies
superlinearly [71]. We performed calculations using a
Gaussian wave packet to describe the c.m. motion
χCMðxÞ ¼ ð1=πÞ1=4ð1=LTXÞ1=2e−x2=2L2

TX [26], and consi-
dered the spatial extent LTX following a 1=T dependence
(colored lines in Fig. 3(d) inset). As the unit cell in MoS2
(∼0.3 nm) is much smaller than the TX emission wave-
length, the interaction strength is gcal ¼ j R χCMðxÞExðxÞdxj
[26], where ExðxÞ is the cavity electric field of mode M1
(black line in Fig. 3(d) inset). The resulting L dependence
of gcal is presented by the gray line in Fig. 3(d) and
reproduces our experimental findings (dots) remarkably
well, despite the simplicity of our model. Therefore, the
nontrivial temperature dependence of cavity-TX interaction
are best reproduced by the nonlocal light-matter inter-
action physics. At T ¼ 300 K, the corresponding LTX is
480� 30 nm. Considering the nondegenerate single opti-
cal mode in the cavity is spatially coherent, and the
enhancement by hBN encapsulation and Si3N4 stress
[24,72,73], this value of LTX close to the recently reported
diffusion length of 300 nm is a reasonable result [27]. Here,
we note that the extent of the c.m. wave function and the
exciton diffusion length both describe the spatial distribu-
tion of excitons. However, they are not strictly equivalent
since the exciton diffusion length also includes inelastic
scattering processes. The theoretical analysis used here is
based on the c.m. wave function that is not necessarily
equal to the diffusion length. Thus, any distinction does not
have any substantive impact on the conclusions drawn
from Fig. 3.
Other factors such as gas condensation and localized

excitons are unlikely to explain the nonmonotonic g since
they have very little affect on the cavity polariton linewidth
(for details, see the Supplemental Material [35]). In
addition, we note that the c.m. wave function χCMðRÞ is
not equivalent to a Gaussian spatial distribution of excitons
χ2CMðxÞ. In the latter case, the interaction strength would be
g2cal ¼

R
χ2CMðxÞE2

xðxÞdx corresponding to a monotonic
decreasing g as L increases (for details, see the
Supplemental Material [35]). Conversely, here ExðxÞ has
both positive and negative values depending on the position
x, and thus the integral

R
χCMðxÞExðxÞdx has both positive

and negative contributions, resulting in the minimum
interaction strength for specific constellations, such as
when LTX ¼ 1.1 μm around twice the wavelength of the
cavity electric field in Fig. 3(d).
In summary, we explored novel light-matter interaction

regimes of free trions in a hybrid high-Q photonic crystal

FIG. 3. (a) PL spectra at 95 K and the multi-Lorentz fitting.
(b) Δω0 and Δγ0 extracted from experimental data. (c) ω− (energy
of the cavity-branch peak) and γ−. Red solid line is the bare cavity
linewidth γC. Red dashed line is the γ− predicted with a constant
interaction strength g0. (d) Results of interaction strength g. Points
are experimentally extracted at different temperatures. The solid
line shows theoretical results calculated with the cavity electric
field Ex from mode M1 and the c.m. wave packet χCM with
different spatial extent LTX presented in the inset.
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nanocavity embedded with pristine hBN/TMD/hBN het-
erostructures. The optimized structure provided quasi 0D
modes with Q > 104, exciton linewidths of MoS2
approaching homogeneous limit and large cavity-MoS2
overlap. These advances facilitated the demonstration of
nonlocal interaction between the cavity and free trions.
Since our approaches can be applied to any 2D materials,
our Letter provides an ideal platform to investigate cQED
and quantum photonics using 2D materials. Therefore,
additional interesting phenomena could be expected in
future work, e.g., the interaction with site-selectively
generated defects [74] or Moiré exciton lattices [75,76],
toward highly scalable quantum photonic devices.
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