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We offer a new perspective on the problem of characterizing mesoscopic fluctuations in the interplateau
regions of the integer quantum Hall transition. We found that longitudinal and transverse conductance
fluctuations, generated by varying the external magnetic field within a microscopic model, are multifractal
and lead to distributions of conductance increments (magnetoconductance) with heavy tails (intermittency)
and signatures of a hierarchical structure (cascade) in the corresponding stochastic process, akin to
Kolmogorov’s theory of fluid turbulence. We confirm this picture by interpreting the stochastic process of
the conductance increments in the framework of H theory, which is a continuous-time stochastic approach
that incorporates the basic features of Kolmogorov’s theory. The multifractal analysis of the conductance
“time series,” combined with the H-theory formalism, provides strong support for the overall charac-
terization of mesoscopic fluctuations in the quantum Hall transition as a multifractal stochastic
phenomenon with multiscale hierarchy, intermittency, and cascade effects.
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Introduction.—In the 1970s Mandelbrot [1] introduced
multifractals as a geometrical tool to describe turbulence.
Later it was discovered that the wave functions of dis-
ordered systems at the critical point of the Anderson
transition exhibit strong amplitude fluctuations which
can be characterized in terms of multifractal scaling [2–
4]. The integer quantum Hall transition (IQHT) is another
important example of a quantum phenomenon in which
wave function multifractalilty has been observed [5–8].
Multifractal behavior has also been observed in the
magnetoconductance fluctuations in graphene-based field-
effect transistors [9]. Such multifractal conductance fluc-
tuations have recently been characterized in mesoscopic
devices subjected to a weak magnetic field in the extreme
quantum regime [10]. In a similar vein, turbulence-like
behaviors have been identified in several physical systems
besides classical fluids, such as random fiber lasers [11–
13], Bose-Einstein condensates [14], and nonlinear optical
devices [15]. In this Letter, we report evidence of the
presence of both a turbulence-like hierarchy and multi-
fractality in the magnetoconductance fluctuations in the
interplateau regions of the IQHT, which as far as we know
has not been demonstrated before.
When the system’s size is smaller than the coherence

length (mesoscopic regime), the transition between the
quantum Hall plateaus presents strong conductance fluc-
tuations which do not behave universally [16–20], in

contrast with standard mesoscopic systems submitted to
small magnetic fields, where universal conductance fluc-
tuations (UCF) are observed [21,22]. In the traditional
studies of UCF the distributions of the relevant observable
tend to a Gaussian-like behavior as the average value
increases [23–30], and thus the characterization of the
parametric evolution (in fictitious time) is also made via
Gaussian processes [31]. Furthermore, the IQHT has a
number of interesting questions related to subtle physical
phenomena that emerge from the interplay between quan-
tum percolation and localization effects [32–43] and which
can be traced back to the mixed nature of the dynamics
inside the sample. In classical mixed systems, regular and
chaotic dynamics coexist, so that their phase spaces show a
hierarchical island structure [44,45], which in turn invalid-
ates standard ergodic quantum stochastic approaches, such
as random matrix theory [31,46]. In the case of magneto-
conductance fluctuations, which is the main focus of this
work, one can in principle apply standard methods of
stochastic physics, including field theoretical approaches
[47]. Nevertheless, it is in the framework of semiclassical
techniques that real quantitative progress have been made
to account for the nonergodic hierarchical structure of the
phase space of mixed systems in their quantum counter-
parts [9,10,48–53].
Here we employ a microscopic model to study a four-

probe weakly disordered mesoscopic sample submitted to a
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perpendicular magnetic field in a regime where the IQHT is
affected by strong mesoscopic fluctuations (see Fig. 1). The
magnetoconductance is characterized by means of both a
multifractal analysis and a multiscale hierarchical stochas-
tic formalism, calledH theory, which has had much success
in describing multifractal complex hierarchical phenomena,
such as turbulence in fluids [54,55], price fluctuations in
stock markets [54], and turbulence hierarchy in a random
fiber laser [12,13,56]. To this end, we interpret the magnetic
field as a fictitious time, following previous works [57–62]
which studied mesoscopic systems submitted to a small
magnetic field. In our analysis, we implement a kind of
inverse problem technique [63] based on a running average
and adapted to exhibit multifractal structure to obtain the
corresponding stochastic processes as a function of external
macroscopic parameters. The multifractal analysis gives
evidence of a turbulence-like cascade process, and we also
find the results to be consistent with the hierarchical
stochastic process of H theory.
Microscopic model.—We consider a noninteracting two-

dimensional electron gas described by the square-lattice
tight-binding Hamiltonian

H ¼ −t
X
ij

eiθijc†i cj þ
X
i

ð4tþ ϵiÞc†i ci; ð1Þ

where ci (c†i ) are annihilation (creation) operators and
t ¼ ℏ2=ð2a2m�Þ, with a and m� being the square lattice
constant and the effective mass, respectively. The
perpendicular magnetic field B is taken into account by
introducing the variables θij ¼ −ðe=ℏÞ R j

i A · dl, where
A ¼ ð−By; 0; 0Þ and ϕ ¼ Ba2=ðh=eÞ are the vector poten-
tial and the dimensionless magnetic flux, respectively. The
disorder is realized by an on site electrostatic potential ϵi,
which varies randomly from site to site according to an
uniform distribution in the interval ð−U=2; U=2Þ, where U
is the disorder width. In our calculations, we used the
KWANT software [64] and set U ¼ 0.65t and the Fermi
energy E ¼ 1.50t, following Ref. [65].
We use the Anderson model described above to study a

four-probe, disordered nanowire of length L ¼ 310a and
widthW ¼ 25a, as illustrated in Fig. 1, where an electronic

current flows from terminal 1 to the other three terminals
[66,67]. The four-terminal transmission coefficients are
calculated via the Landauer-Büttiker formula, T lk ¼
Tr½s†lkslk�, where slk are transmission or reflection matrix
blocks of the scattering matrix S ¼ ðsijÞi;j¼1;…;4.
The transmission coefficients Txx ¼ T 21 and

Txy ¼ T 31 þ T 41, as functions of the magnetic flux ϕ
(to be regarded as a fictitious time), are plotted in Fig. 2(a)
for the region between the second and first Hall plateaus.
Note that the coefficients satisfy the relation T 11ðϕÞþ
TxxðϕÞ þ TxyðϕÞ ¼ N , where N is the number of propa-
gating wave modes in the terminals, which is tuned by the
Fermi energy. The time series of TxyðϕÞ and TxxðϕÞ shown
in Fig. 2 were obtained for one realization of the disorder
potential with 104 time steps. One sees that both longi-
tudinal and transverse transmission coefficients fluctuate in
a seemingly random fashion between plateaus, as reported
previously [32,34,36]. The corresponding series of trans-
mission increments, ΔTðϕÞ ¼ Tðϕþ ΔϕÞ − TðϕÞ, where
T stands for either Txx or Txy, are shown in the inset of
Fig. 2(a), where one sees that the transmission increments
fluctuate rather intermittently.
Figure 2(b) shows color-coded plots of the local density

of states (LDOS) for increasing values of ϕ (from top to
bottom). Note that in the Hall plateaus [top and bottom
panels of Fig. 2(b)] the LDOS is localized near the upper
and lower edges of the device, as expected, since in such

FIG. 1. The integer quantum Hall setup. A disordered nano-
wire (shaded area) is connected to four terminals and submitted
to a magnetic field B applied perpendicularly to the sample
surface. The terminals are submitted to voltages Vi, for i ¼
1;…; 4, where V1 > V2; V3; V4.

FIG. 2. (a) Longitudinal Txx (red) and transverse Txy (blue)
transmission coefficients of a disordered nanowire between the
second and first Hall plateaus as functions of ϕ. The respective
transmission increment series are shown in the inset. (b) LDOS in
the transition between the second and first Landau levels for
increasing values of the magnetic flux ϕ ¼ 0.50, 0.55, 0.56, 0.64
(from top to bottom). The probes are shown in gray. The LDOS
increases as the color changes from red to blue.
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cases the only extended states that connect contacts are
edge states. As the system is driven away from a plateau by
varying ϕ, the LDOS penetrate into the bulk and a complex
spatial pattern develops [middle panels of Fig. 2(b)],
leading to the formation of coherent structures of different
sizes inside the device. This process is somewhat similar to
a laminar-to-turbulence transition, in the sense that near a
Hall plateau the LDOS are rather laminar (albeit restricted
to the edges), whereas it becomes very irregularly distrib-
uted in space as the magnetic field is varied. In particular,
one clearly sees that there is a large range of length scales in
the shown patterns. Such a multiscale dynamics will be
examined below from the viewpoint of both a multifractal
analysis and a turbulence-like cascade model [68].
Multifractal analysis.—Here we shall employ the multi-

fractal detrended fluctuation analysis (MF-DFA) [69] for
time series of transmission coefficients TðϕÞ, Fig. 2(a).
For a brief description of the main steps of the MF-DFA
algorithm; see the Supplemental Material [70]. Figure 3(a)
shows the generalized Hurst exponent hðqÞ, which is
obtained through the scaling relation of the qth order
fluctuation function FqðτÞ ∼ τhðqÞ, as computed for both
TxyðϕÞ and TxxðϕÞ [70]. The strong dependence of hðqÞ on
q reveals a multifractal behavior in both series. Figure 3(b)
shows the singularity spectra fðαÞ for TxyðϕÞ and TxxðϕÞ,
which both display a wide range of singularities Δα ¼
αmax − αmin, thus confirming the multifractal behavior for
the magnetoconductance fluctuations in the transmission
coefficients between Hall plateaus. Furthermore, the results
shown in Figs. 3(a) and 3(b) indicate that the fictitious time
series TxxðϕÞ and TxyðϕÞ exhibit similar multifractal
behavior, in the sense that the respective curves for hðqÞ
and fðαÞ for both series are quite close to one another.
Multifractality in a time series typically has two main

sources [69,71]: (i) long-range correlations, which can be
removed by shuffling the series, and (ii) fat-tailed distri-
butions of the series values, in which case the multi-
fractality cannot be removed by the shuffling procedure. To
investigate the origin of multifractality in the fluctuations of

the transmission coefficients in the IQHT, we have com-
puted the exponents hðqÞ for the respective shuffled series.
In all cases we found hðqÞ ≈ 0.5, indicating that the
shuffled series are monofractal and uncorrelated, which
leads us to conclude that the multifractality in the transport
coefficients in the IQHT stems mainly from correlations
induced by the magnetic field variation. This finding points
toward a complex multiscale dynamics in the IQHT, which
we investigate next.
H-theory approach.—Here our main objective is to find

the (possibly universal) form of the distribution of trans-
mission increments ΔτTðjÞ ¼ T½ðjþ τÞΔs� − TðjΔsÞ,
where j ¼ 1;…; n − τ, with n being the number of points
in our original time series TðsÞ. It is important to emphasize
that we seek to characterize the statistical properties of the
increments, ΔτTðjÞ, rather than of the transmission coef-
ficients TðsÞ themselves, since time-lagged increments are
more suitable quantities to investigate the scale dependence
within the dynamics of conductance fluctuations in the
quantum Hall problem. To carry out such a study, we shall
employ a hierarchical formalism, or H theory for short,
the primary ideas of which were first considered in
Refs. [72,73] and later expanded in Refs. [54,55,74].
The main mathematical aspects of the H theory are

summarized in the Supplemental Material [70]. Here it
suffices to say that in this formalism the probability density
function of the observed variable at short scales is written as
a statistical superposition of a local quasiequilibrium
distribution, weighted by the distribution of an effective
internal variable that characterizes the slowly changing
background, as follows: PðxÞ ¼ R

∞
0 P0ðxjεÞfðεÞdε. Here x

is the relevant observable, which in the IQHT problem
corresponds to the transmission increments ΔT; P0ðxjεÞ is
the local equilibrium distribution (conditioned on a fixed
background), which is assumed to have the same functional
form as the large-scale distribution, and ε is a random
variable representing the slowly fluctuating background.
For instance, in turbulence ε represents the energy flux
from the adjacent larger scale eddies, whereas in the IQHT
context, the background is provided by the large structures
in the energy density of Fig. 2(b), under which the “electron
flow” evolves over short (fictitious) time scales. As the last
and crucial ingredient of the H-theory formalism, the
probability density fðεÞ of the background variable is
obtained explicitly from a hierarchical intermittency model
in terms of special functions, namely the Meijer G
functions [75]:

fNðεÞ ¼
ω

ε0ΓðβÞ
GN;0

0;N

� −
β − 1

����ωεε0
�
; ð2Þ

where N is the number of time scales (hierarchical levels)
of the system; βk, k ¼ 1;…; N, and ε0 are parameters to be
fitted to the data; ω ¼ Q

N
k¼1 βk; and we have introduced the

vector notation β≡ ðβ1;…; βNÞ and ΓðβÞ≡Q
N
k¼1 ΓðβkÞ.

FIG. 3. (a) The generalized Hurst exponent hðqÞ and (b) the
multifractal spectrum fðαÞ for the transmission coefficient series
TxyðϕÞ (blue symbols) and TxxðϕÞ (red symbols) of the disor-
dered nanowires. The dashed lines in (a) and (b) are simple
interpolations and quadratic fits of the symbols, respectively.
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In applying formula (2) to our numerical data, we shall set
βk ¼ β, so that we are left with only two free parameters,
namely β and ε0, for a given N (see below).
In many complex systems the large-scale increments are

expected to follow a Gaussian distribution [54]. This is
particularly true in cases where the primary quantity of
interest (say, the velocity in a turbulent flow) fluctuates in a
Gaussian fashion, so that the large, uncorrelated increments
are expected to have the same distribution as the primary
variable itself. Under the assumption that the large-scale
distribution P0ðxjεÞ is Gaussian, the compounding integral
introduced above can be performed exactly, so that the
short-scale distribution PNðxÞ is also written in terms of G
functions [70]. For the IQHT, however, scaling theory
predicts a Gaussian distribution for the magnetoconduc-
tance fluctuations only for the bulk metallic phase [5]. In
the mesoscopic regime, i.e., when the system’s size is
smaller than the coherence length, there are substantial
deviations from Gaussianity due to fractal fluctuations
caused by interference effects [76]. Furthermore, the trans-
mission coefficients between plateaus are constrained by
the relation T 11 þ Txx þ Txy ¼ N . Thus, in the present
problem, a Gaussian process is not expected to hold for our
primary time series and, consequently, nor for the large-
scale increments. We thus need a different approach to
arrive at the large-scale distribution P0ðΔTjε0Þ.
It is shown in the Supplemental Material [70] that under

an inverse logistic transformation, z ¼ 2tanh−1ðΔTÞ, the
large-scale distribution for the new variable z tends to a
Gaussian function, so that the standard H theory can be
applied to z. Upon returning to the original variable ΔT,
one then obtains the following expression for the proba-
bility distribution of increments:

PNðΔTÞ ¼
ffiffiffiffiffiffi
2ω

p
ffiffiffiffiffiffiffi
πε0

p ΓðβÞ
1

ð1 − ðΔTÞ2Þ

× GNþ1;0
0;Nþ1

� −
β − 1=2; 0

���� 2ωðtanh
−1ΔTÞ2

ε0

�
: ð3Þ

An important point to note is that in the H-theory approach
the numerical fits are performed at the level of the back-
ground distribution given by Eq. (2). Only after the
parameters are determined from the fit of the background
distribution, the theoretical distribution PNðΔTÞ is then
plotted and compared to the empirical distribution. The
agreement between theory and data in this case is a much
more stringent requirement than a direct fit to the signal
distribution itself.
To proceed with the numerical analysis, we thus need to

extract the background series directly from the measured
data. Once we have obtained the background series εNðkÞ
(see the Supplemental Material [70] for details), we can
then compute its histogram and fit it with the theoretical
distribution fNðεÞ given in Eq. (2). This allows us to infer

the number of scales N and determine the best values for
the parameters β and ε0. Figures 4(b) and 4(d) show the best
fits of the background distributions for ΔTxyðϕÞ and
ΔTxxðϕÞ, respectively, for N ¼ 2, 3, 4, 5. The plots of
the theoretical distribution PNðΔTÞ, as given in Eq. (3), are
shown in Figs. 4(a) and 4(c), superimposed with the
respective empirical distribution for the transmission incre-
ments. Note that in both cases we observe an excellent
agreement between the theoretical predictions and the
empirical distributions for N ¼ 5, which can be understood
as the number of levels in the hierarchy of length scales
seen in Fig. 2(b). This confirms that the plateau transition in
the quantum Hall effect (in the mesoscopic regime) dis-
plays a turbulence-like hierarchical structure.
We may estimate the number N of relevant length scales

for a given IQHT system by assuming that the largest and
smallest “eddies” of the electron flow in the nanowire are
limited by W and a. Supposing that these coherent
structures approximately halve in size between hierarchical
levels, we may write W ¼ 2Na [73]. Since W ¼ 25a, we
could expect that N ¼ ln 25= ln 2 ¼ 4.6, which is surpris-
ingly close to N ¼ 5.
Conclusions.—The characterization of mesoscopic fluc-

tuations is an important aspect of the description of phase
coherent quantum transport. Our approach builds on a
detailed analysis of the effective stochastic time series
obtained from the longitudinal and transverse transmission
increments as functions of the magnetic field in the IQHT.
We have performed a multifractal analysis of the time series
of transmission coefficients and concluded that they exhibit

FIG. 4. Distribution of increments (red squares) of (a) trans-
versal ΔTxyðϕÞ and (c) longitudinal ΔTxxðϕÞ transmission
coefficients. Continuous color lines represent the best fit of
Eq. (3) using least squares. (b),(d) Histogram (red squares) of the
variance series ϵ and model predictions (lines) fitted by Eq. (2)
with the same parameters and color conventions as in (a) and (c).
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multifractal behavior. Besides, we also found heavy tails
(intermittency) and signatures of a hierarchical structure
(cascade), similar to Kolmogorov’s theory of fluid turbu-
lence, in the transmission increments of a disordered
nanowire. We interpreted the results in the framework of
H theory, which is a continuous-time stochastic approach
that incorporates the basic features of Kolmogorov’s theory.
The combined descriptions—multifractal analysis and H
theory—applied here give strong evidence that the meso-
scopic fluctuations in the IQHT are a multiscale hierarchi-
cal turbulence-like stochastic phenomenon.
Standard approaches to the IQHT apply to the thermo-

dynamic limit, where a critical conformal field theory can
in principle be defined [77]. However, owing to significant
discrepancies between the various microscopic models, the
characterization of the universality class of the IQHT is still
under much debate [78,79]. In the mesoscopic regime we
considered here, effects such as finite size and even the
lattice structure may be needed to be incorporated into the
effective models, so as to give rise to the emergence of
hierarchical structures [80–84], which are required to
explain the turbulence-like features that we observed.
Whilst the detailed microscopic mechanism behind the
cascade effect in the IQHT is beyond the scope of the
present work, we can try to interpret it in terms of an
information flow between several emergent levels of
descriptions in the language of nonequilibrium statistical
mechanics [85]. For instance, using projection methods, the
authors of Ref. [86] argued that in the approach to
equilibrium, information in a system may flow from slow
(relevant) to fast (irrelevant) degrees of freedom, giving rise
to a cascade of different Markovian levels of descriptions
associated with the several stages of thermalization. In the
IQHT with strong mesoscopic fluctuations, we might thus
argue that, akin to Kolmogorov’s theory of fluid turbulence,
all levels in the cascade are present at the same time giving
rise to the complex pattern of information flow that is
captured by the H theory, as reported in this paper. A more
detailed analysis of this argument and a study of the
possible origins of the cascade in the IQHT are interesting
topics for further research. Here we only briefly mention
that the turbulence-like hierarchy we uncovered in the
magnetoconductance fluctuations in the IQHT might be a
fingerprint of deeper underlying hierarchical structures.
Possible candidates for such structures include (a) the
Hofstadter butterfly energy spectrum of electrons on a
2D lattice in a perpendicular magnetic field [80,81,87,88]
and (b) the fractal geometry of the phase space of systems
with mixed dynamics [10]. Owing to its generality and
proven successes, as shown here for the IQHT (see also
Refs. [12,13,89] for applications in random lasers), we
expect that our hierarchical turbulence-like approach
should apply to other fluctuation phenomena in condensed
matter systems.

After submission of the first version of this paper, we
became aware of a recent work that presents experimental
evidence of multifractality in the conductance fluctuations
at the IQHT in a four-probe mesoscopic graphene device
[90], which is in complete agreement with our theoretical
results.
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