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We study the Casimir interaction between two dielectric spheres immersed in a salted solution at
distances larger than the Debye screening length. The long distance behavior is dominated by the
nonscreened interaction due to low-frequency transverse magnetic thermal fluctuations. It shows
universality properties in its dependence on geometric dimensions and independence of dielectric
functions of the particles, with these properties related to approximate conformal invariance. The universal
interaction overtakes nonuniversal contributions at distances of the order of or larger than 0.1 μm, with a
magnitude of the order of the thermal scale kBT such as to make it important for the modeling of colloids
and biological interfaces.
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The electromagnetic Casimir effect [1–3] and the so-
called critical Casimir effect [4–8] are two examples of
long-range forces appearing when fluctuations are confined
within walls [9]. The former is often considered as
associated to quantum field fluctuations and the latter to
classical thermal fluctuations in matter. A problem sharing
properties with both of them corresponds to the high-
temperature limit of the electromagnetic Casimir interac-
tion between bodies separated by a medium.
The case of two metallic spheres described by a Drude

conductivity model in vacuum has been shown to lead to a
universal expression in the limit of high temperatures or,
equivalently, of large distances, with the free energy not
depending on the details of the electromagnetic response
of the involved material [10,11]. At room temperature
T ∼ 300 K, this universal thermal Casimir contribution
overtakes the nonuniversal terms at large distances [12]
of the order of the thermal wavelength ℏc=kBT ∼ 7.6 μm,
making its experimental detection challenging as the
magnitude of the force is decreasing as a power-law
function of the distance [13].
We will consider in this Letter a complementary case

with two dielectric particles separated by a conducting
electrolyte solution. In this case, there is also a universal
classical expression in the limit of high temperatures, with
the free energy not depending on the detailed dielectric
function of the involved material. The universal thermal
contribution now overtakes the sum of nonuniversal terms
at a much smaller distance lT of the order of 0.1 μm for
typical materials considered in this context [14,15]. The
existence and magnitude of this universal Casimir inter-
action have recently been confirmed by measurements [16]

involving a silica microsphere held by optical tweezers [17]
in the vicinity of a larger sphere, with both spheres
immersed in salted water.
The high-temperature Casimir interaction between

dielectric spheres in a conducting solution is a universal
function of the geometry that can be derived exactly with
the help of analytical and numerical tools based on the
scattering approach [18] by using the plane-wave basis
[19]. We present below the universal interaction free
energy obtained in this manner and show that it can reach
the thermal energy scale kBT, which makes it important
for the description of biological interfaces and colloidal
solutions [20].
In the following, we study the Casimir interaction

between two dielectric spheres immersed in a salted
solution at ambient temperature under the assumptions
that the distance of closest approach L between the spheres
is much larger than the Debye screening length λD and
larger than the length lT introduced above. The first
assumption implies that electrostatic interactions resulting
from surface charges or electric potential fluctuations
[21–23] are efficiently screened while the second
assumption ensures that the force is dominated by the
Matsubara term at zero frequency [24]. Under these
assumptions, the main force is due to the Casimir inter-
action mediated by low-frequency transverse magnetic
thermal fluctuations coupled to electric multipoles.
We have calculated numerically the exact free energy

for the geometry of two spheres with arbitrary radii by
adapting the plane-wave approach introduced in Ref. [19]
to our problem. It turns out that the free energy shows
universality properties for arbitrary values of geometric
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parameters and, in particular, that the interaction does not
depend on the dielectric functions of the spheres. We first
recall the method for calculating the free energy and then
give approximated expressions allowing one to obtain
simple estimates for it without having to perform the
complete numerical calculation.
The free energy F T in the high-temperature limit can be

written as the product of an energy scale, the thermal
energy kBT, and a dimensionless function fu depending
only on two ratios of the geometric dimensions L, R1,
and R2:

F TðL;R1; R2Þ ¼ −kBTfu: ð1Þ

The negative sign of F T implies attraction between
the spheres. As fu does not depend on T, the entropy is
S ¼ kBfu and the free energy is F T ¼ −TS, so that the
Casimir force is purely entropic in nature here.
The parameter used as a subscript in fu measures the

ratio of radii in an expression symmetric in R1, R2:

u ¼ R1R2

ðR1 þ R2Þ2
: ð2Þ

It lies in the range 0 ≤ u ≤ 1=4, with u ¼ 0 corresponding
to a plane-sphere geometry and u ¼ 1=4 to two spheres of
equal radii. A natural choice for the other parameter could
be the dimensionless distance,

x ¼ L
Reff

; ð3Þ

where Reff ¼ R1R2=ðR1 þ R2Þ is the effective radius of the
system of two spheres. We will see however that a
better parameter for describing the dependence of fu on
distance is

y¼ðLþR1þR2Þ2−R2
1−R2

2

2R1R2

¼1þxþu
x2

2
: ð4Þ

This geometric quantity y is invariant under conformal
transformations generated by isometries and inversion in
three-dimensional Euclidean space [25]. It has been known
for a long time [26,27] to simplify the expression
of the mutual capacitance C12 between the two spheres
[C12 is written in terms of ϖ ¼ arcoshðyÞ in Ref. [27],
Pt. 1, Sec. 11].
Within the scattering approach, fu can be written in

terms of an operator M representing the effect on the
electromagnetic field of a single round-trip in the cavity
formed by the two spheres:

fu¼−
Trlogð1−MÞ

2
¼
X∞

r¼1

fðrÞu ; fðrÞu ≡TrMr

2r
: ð5Þ

The contribution fðrÞu corresponds to a given number r of
round-trips in the cavity, and fu is the sum over all numbers
of round-trips. The round-trip operator M is defined as a
product of reflection operatorsRm for the spheresm ¼ 1, 2
and translation operators T m0m from a frame aligned on
sphere m to the one aligned on m0:

M ¼ R1T 12R2T 21: ð6Þ

These operators can be expressed explicitly in the basis of
plane waves [28] characterized by the projection k of the
wave vector onto the plane perpendicular to the line joining
the two centers of the spheres with the direction of
propagation changing at each reflection.
In this basis, the translation operators are diagonal:

hk0jT m0mjki ¼ e−kðLþR1þR2Þδð2Þðk0 − kÞ; ð7Þ

where k ¼ jkj is the norm of the projected wave vector k.
The reflection operators R1 and R2 can be derived by
following Ref. [29] and in particular its Appendix B where
the zero-frequency limit is described. When considering
spheres in salted water instead of vacuum as was done in
Ref. [29], we need to replace the static dielectric constant
εð0Þ by the ratio εsð0Þ=εmð0Þ of static dielectric functions
of spheres and medium.
Using salted water as the medium has two consequences

for our problem. Moving ions efficiently screen longi-
tudinal modes [15], and we can restrict our attention to
transverse magnetic modes. Furthermore, in view of the
finite static conductivity of the medium, εmð0Þ is infinite.
Hence, as long as the dielectric functions of the spheres
remain finite, any detailed dielectric property of the
particles disappears from the matrix elements of the
reflection operators R1 and R2:

hk0jRmjki¼−
2πRm

k0
X∞

l¼1

l
lþ1

½2R2
mkk0ð1þcosφÞ�l

ð2lÞ! ; ð8Þ

with φ the angle between the ingoing and outgoing
projected wave vectors k and k0.
Our numerical results for fu are shown in Figs. 1 and 2 as

functions of x and y − 1, respectively, for fixed values of u,
i.e., fixed ratios of radii. Both plots show a monotonic
decrease of free energy from small to large distances L.
Their comparison reveals that the dependence of fu on u
seen on Fig. 1 is largely captured on Fig. 2 by using the
abscissa y − 1 ¼ x½1þ ðux=2Þ�, which is a stretched
version of x with the stretching factor depending on u.
The fact that the different curves fu are better aligned on
Fig. 2 will be given an interpretation by the analytical
results presented below.
We follow the method of Ref. [30] and express the

Casimir free energy in terms of Gaussian-type integrals.
The single round-trip expression thus yields
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fð1Þu ¼ y
4ðy2 − 1Þ þ

z
12

log
ðy2 − 1Þz2
ðyzþ 1

2
Þ2

þ 1

12
ffiffiffi
z

p
X

η¼�

1

α3=2η

log
2y2 þ αηy − 1þ ffiffiffiffiffiffiffi

αηz
p

2y2 þ αηy − 1 − ffiffiffiffiffiffiffi
αηz

p ; ð9Þ

where auxiliary variables have been introduced:

α� ¼ 1 − 2u� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4u

p

2u
; z ¼ 2ðy − 1Þ þ 1

u
: ð10Þ

The function fð1Þu shows basically the same behavior as fu
in Fig. 2. It mainly depends on y, which means that the
analytical results nearly obey conformal invariance. But

fð1Þu still depends on u through the parameters α�, which
correspond to the ratios R1=R2 and R2=R1, and this
dependence breaks exact invariance.
The large-distance limit L ≫ Reff is dominated by the

single round-trip contribution obtained from the asymptotic
expansion of Eq. (9):

fu¼0 ≃
1

8y3
; fu≠0 ≃

3

32y3
≃
3

4
fu¼0: ð11Þ

The free energy in the sphere-sphere geometry (u ≠ 0) is
smaller by a factor 3=4 relative to the plane-sphere

geometry (u ¼ 0). The ratio fð1Þu =fð1Þ0 for different values
of u is depicted in Fig. 3. For large distances, the curves
asymptotically reach the limit 3=4 if u ≠ 0. This factor is
the main reason for the dependence of fu on u observed at
large values of y − 1 in Fig. 2, that is the breaking of exact
conformal invariance.
While the asymptotic power-law dependence on y in

Eq. (11) is the same for all values of u, this is no longer the
case when the free energy is expressed as a function of x.
Then, the free energy in the plane-sphere case decreases
as x−3 while it decays as ðux2Þ−3 for two spheres, thus
explaining why the asymptotics is so different in Fig. 1. In
simple words, the asymptotic behaviors (11) explain why
using the abscissa y − 1 captures most of the distance
dependence of the free energy while still weakly breaking
exact conformal invariance.
In the short-distance limit L ≪ Reff , multiple round-trips

need to be accounted for. In this limit, fð1Þu is independent
of u and the same holds for multiple round-trips with

fðrÞu ≃ fð1Þu =r3. It follows that the sum over r can be written
as a simple factor, the Apéry’s constant ζð3Þ:

fu ≃
X∞

r¼1

fð1Þu

r3
≃

ζð3Þ
8ðy − 1Þ : ð12Þ

This result explains why the curves fu calculated for
different values of u tend to become identical when
x ≪ 1 in Fig. 1 and y − 1 ≪ 1 in Fig. 2. The free energy
(12) corresponds to the so-called proximity-force approxi-
mation, where the force can be obtained by integrating the
pressure calculated between two planes [31] over the range
of distances met in the geometry of two spheres. The result
(12) also coincides with the short-distance limit of the
free energy between Drude spheres in vacuum as the
Fresnel reflection amplitudes for the two complementary

FIG. 2. Reduced free energy fu with the same conventions and
scales as on Fig. 1, but for the use of abscissa y − 1. The range of
abscissas matches that on Fig. 1 for the curve u ¼ 0.

FIG. 3. Ratio fð1Þu =fð1Þ0 versus y − 1 for different values of
u ¼ 0, 0.04, 0.10, 0.25 from top to bottom. All curves for u ≠ 0
go from the value 1 at y − 1 ≪ 1 (top line, u ¼ 0) to the value 3=4
at y − 1 ≫ 1 (bottom dashed line).

FIG. 1. Reduced free energy fu for two dielectric spheres in
salted water, drawn as a function of x ¼ L=Reff for different
values of u ¼ 0, 0.04, 0.10, 0.25 from top to bottom.
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configurations are identical except for the sign. We stress
that such coincidence does not hold for the intermediate
distances relevant for applications.
A remarkable fact appears when drawing the ratio of the

full expression fu to the single round-trip expression fð1Þu :

ϕuðyÞ≡ fuðyÞ
fð1Þu ðyÞ

: ð13Þ

As expected from previous discussions, this ratio goes from
the constant ζð3Þ ≃ 1.202 at small values of y − 1 to the
constant 1 at large values of y − 1. We see in Fig. 4 the even
stronger property that the ratio ϕu is a monotonically
decreasing function of y − 1 depending very weakly on
the parameter u. Precisely, the curves drawn on Fig. 4 with
the same conventions as on Fig. 2 are practically indis-
tinguishable from each other, which corresponds to a nearly
exact conformal invariance. The very weak dependence on
u is assessed by calculating numerically the ratio ϕu=ϕ⋆
with ϕ⋆ evaluated for a fixed value u ¼ u⋆. Choosing
for u⋆ the value u ¼ 0.1 minimizes the deviation of
jϕu=ϕ⋆ − 1j, which remains smaller than 4 × 10−4 on the
whole domain of parameters y > 1 and 0 ≤ u ≤ 1=4.
The reason for this nice universality property can be

understood qualitatively. The contributions of multiple
round-trips are important when the single round-trip con-
tributions are themselves large, that is in the domain
y − 1 ≪ 1 where all contributions tend to become inde-
pendent of u. A significant dependence of contributions on
u would appear in the opposite domain, but ϕu is anyway

close to unity there since fu and fð1Þu tend to become
identical. These simple arguments explain why the depend-
ence of ϕu on u remains weak.
It is furthermore possible to find a rational function of

the argument ey−1 which fits the different curves ϕu with a
small maximal error on the whole domain of parameters:

����
ϕuðyÞ
ϕRMðyÞ

− 1

���� < ϵ: ð14Þ

The rational model function ϕRM has the following form:

ϕRMðyÞ ¼
Yn

k¼1

ey−1 − 1þ νk
ey−1 − 1þ μk

; ð15Þ

where νk, μk are roots of the polynomials in the numerator
and denominator. They have been written as values close
to 0, with all values νk, μk being positive to avoid large
deviations on the domain y > 1. Inserting the coefficients
given in Table I in the rational function (15) leads to a
maximal deviation ϵ ≃ 1.2 × 10−3.
We are left in the end of this reasoning with a largely

simplified expression of the full function fuðyÞ:

fuðyÞ ¼ fð1Þu ðyÞϕRMðyÞ: ð16Þ

The first factor is the analytical single round-trip expression
(9) depending on y and u, while the second factor ϕRM is
the rational function (15) with the associated parameters
given in Table I. This leads to an accuracy which should be
sufficient for most applications [32].
As already mentioned, analogous universality properties

were discussed for the Casimir free energy between
metallic spheres in vacuum described by the Drude model
at the high-temperature limit [10,11]. There, the reason for
the universality was that the dielectric function of the
spheres tends to infinity at zero frequency, due to the finite
static conductivity of metals. In this sense, the problem
studied here is dual of the preceding one, with the medium,
salted water, exhibiting a finite static conductivity. For the
problem of metallic spheres, the factor −l=ðlþ 1Þ in
Eq. (8) has to be replaced by unity [30], thereby changing
the details of the results while preserving most qualitative
discussions. A significant difference comes from the
evaluation of the minimal distance for which the free
energy is mainly given by the zero-frequency Matsubara
term. In the case of vacuum, this distance is the thermal
wavelength 7.6 μm, whereas a much smaller distance
lT ∼ 0.1 μm is found in the case of salted water [33].
The universal expression studied in the present Letter
describes the force accurately on a much broader distance
range than the analogous expression for metallic spheres in
vacuum. Furthermore, there exists a wide range of distances

FIG. 4. Ratio ϕu ≡ fu=f
ð1Þ
u with the same conventions as on

Fig. 2, except that a linear scale is used for the ordinate. The
curves for different values of u are practically indistinguishable
from each other. They produce a universal function decreasing
from ζð3Þ ≃ 1.202 at small y − 1 (top dashed line) to 1 at large
y − 1 (bottom dashed line).

TABLE I. Table of coefficients to be used in the model (15) for
n ¼ 2 with maximal deviation ϵ ¼ 1.2 × 10−3.

k ¼ 1 k ¼ n ¼ 2

νk 0.004 618 0.096 39
μk 0.004 415 0.083 97
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where the Casimir force is sufficiently strong to make the
universal thermal contribution of the electromagnetic field
experimentally accessible [16].
In the end, the results of this Letter imply that two

spherical objects approaching each other in salted water
with strong screening undergo a nonscreened Casimir
interaction having a universal dependence on geometric
parameters, but no dependence on dielectric properties of
the spheres. This interaction should have important poten-
tial consequences for the physics of biological interfaces
and colloids as soon as it represents a significant fraction of
the thermal energy kBT as the immersion in water imposes
a Brownian motion to the spheres. This condition is met
when the distance L is of the order of or smaller than one-
tenth of the effective radius (see Figs. 1 and 2). In the
associated domain y − 1≲ 0.1, the interaction is mainly
determined by the conformally invariant parameter y
characterizing the two-spheres geometry, so that the break-
ing of exact conformal invariance through a dependence on
u remains weak (see Fig. 3). The interaction cannot be
deduced precisely from any of the two limiting cases (11)
or (12), but its estimation is easily deduced from Eq. (16)
with the function ϕRM having significant variations in the
domain of interest for biological interfaces (see Fig. 4).
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