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Most implementations of quantum gate operations rely on external control fields to drive the evolution
of the quantum system. Generating these control fields requires significant efforts to design the suitable
control Hamiltonians. Furthermore, any error in the control fields reduces the fidelity of the implemented
control operation with respect to the ideal target operation. Achieving sufficiently fast gate operations at
low error rates remains therefore a huge challenge. In this Letter, we present a novel approach to overcome
this challenge by eliminating, for specific gate operations, the time-dependent control fields entirely. This
approach appears useful for maximizing the speed of the gate operation while simultaneously eliminating
relevant sources of errors. We present an experimental demonstration of the concept in a single nitrogen-
vacancy center in diamond at room temperature.
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Introduction.—Quantum gates are the elementary steps
for processing quantum information. They are therefore
essential for all quantum technologies, such as quantum
computing [1–3] or quantum sensing [4–6], and they must
be implemented in all types of quantum registers such as
superconducting qubit systems [7,8], ion traps [9,10], or
hybrid qubit systems, combining, e.g., electronic and
nuclear spins [4–6]. In most cases, elementary quantum
gates are realized by segments of external control fields,
often including free evolution periods [11–15]. Designing
these sequences of control fields is an optimization task,
where the number of control field segments, their strengths,
durations, and phases are adjusted such that the resulting
unitary has maximum overlap with the target quantum gate
[16–19]. The duration of the gates is limited by the strength
of the couplings between the qubits and by the strength of the
interaction between the qubits and the control fields [20–22].
These limitations become severe when gate operation

times exceed the qubit coherence times, and thus coherent
control becomes impossible. Although various techniques
were demonstrated for alleviating this problem like pro-
tected quantum gates [23,24] or indirect control [17,25],
they add control overhead, and the resulting gate durations
still tend to be long. Here, we introduce a novel approach to
overcome these challenges, which results in highly efficient
gates that have the shortest possible durations without any
control overhead.
The computational basis states of a single qubit are j0i and

j1i, and for a two-qubit system fj00i; j01i; j10i; j11ig.
While the computational basis states are usually assigned
to eigenstates of the Hamiltonian, we choose here a different
approach where some computational states are not eigen-
states of the system Hamiltonian. This allows us to generate
logical operations such as a conditional rotation (CR)without
applying control fields, simply by allowing the system to

evolve under its internal Hamiltonian. In the example
discussed below, the states j00i and j01i are eigenstates of
the system Hamiltonian and hence do not evolve, while j10i
and j11i are superpositions of eigenstates. The evolution of
this system therefore generates a conditional gate operation
with the first qubit acting as the control qubit. The evolution
is periodic, with period tp ¼ 2π=jE3 − E4j, where Ei are the
energies of the eigenstates, and we choose units where
ℏ ¼ 1. Thus for a delay τ, the free evolution implements a
conditional rotation UCRðαÞ with the rotation angle
α ¼ 2πτ=tp ¼ τjE3 − E4j, such that UCRðαÞ reaches the
quantum speed limit given by the energy of the system
[12,20,21]. The resulting UCRðαÞ is the fastest possible gate
for the given Hamiltonian and is not affected by errors in
control fields. In this Letter, we provide details on how this
type of gate operations can be implemented and show
experimental results.
Hamiltonian and computational basis.—For the dem-

onstration of this fast gate operation, we use a single
nitrogen-vacancy (NV) center in diamond at room temper-
ature [26–30]. The NV center consists of a spin-1 electron
coupled to a spin-1 14N and a spin-1=2 13C, as shown in
Fig. 1(a). For the two-qubit operation, we choose a
subsystem consisting of two of the electron spin levels
as the control qubit and the 13C spin as the target qubit,
while the 14N is a passive spin that is not affected by the
gate operations. The secular part of the electron-13C system
Hamiltonian in the laboratory frame is

H
2π

¼ DS2z − νeSz − νCIz þ AzzSzIz þ AzxSzIx; ð1Þ

where Sz and Iz=x are the spin operators for the electron and
the 13C, respectively, D ¼ 2.870 GHz is the zero field
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splitting of the electron, Azz ¼ −0.152 MHz and Azx ¼
0.110 MHz are the longitudinal and transverse compo-
nents of the hyperfine coupling with 13C, νe ¼ ðγeB0 −
2.16Þ MHz ¼ −400.110 MHz is the electron Larmor
frequency that includes the shift from the 14N hyperfine
coupling when the nitrogen is in the mN ¼ 1 state, and
νC ¼ γCB0 ¼ 0.152 MHz is the 13C Larmor frequency in a
magnetic field B0 ¼ 14.2 mT. Here γe and γC are the
gyromagnetic ratios of electron and 13C, respectively.
In the presence of B0, the two transitions between the

electron spin states mS ¼ 0 ↔ −1 and 0 ↔ þ1 are well
separated with a frequency difference of 2νe. We choose to
implement our gates in the electron subspacemS ¼ f0;−1g
and define sz as the pseudospin-1=2 operator for this
subspace, with eigenvalues �1=2. Each of the two elec-
tron spin levels splits into two due to the coupling with
13C. The resulting four levels form our system subspace,
and we call its Hamiltonian the subspace Hamiltonian Hs
(see the Supplemental Material [31]). We choose the
eigenstates of sz and Iz as the computational basis states
fj0i;j1ig⊗fj0i;j1ig.
We transform the subspace Hamiltonian to an interaction

frame as

HI ¼ U trðτÞHsU
†
trðτÞ − iU trðτÞ

dU†
trðτÞ
dτ

¼ j1ih1j ⊗ ½−2πAzxIx�; ð2Þ

where the interaction frame is defined by the unitaryU trðτÞ¼
expð−i2πτ½νCj0ih0j⊗ IzþðDþνeÞsz⊗ I−ððDþνeÞ=2Þ×
I⊗ I�Þ, where I is the 2 × 2 identity operator (see the
Supplemental Material [31]). The energy eigenstates of
HI are fj00i;j01i;j1ψi;j1ϕig, where jψi¼ðj1iþj0i= ffiffiffi

2
p Þ

and jϕi ¼ ðj1i − j0i= ffiffiffi
2

p Þ, with eigenvalues E1 ¼ E2 ¼ 0
and E3 ¼ −E4 ¼ πAzx, as indicated in Fig. 1(b).

With this Hamiltonian, a free evolution of duration τ
generates the propagator

UCRðαÞ¼ expð−iHIτÞ¼ j0ih0j⊗ Iþj1ih1j⊗RxðαÞ; ð3Þ

where RxðαÞ ¼ expðiαIxÞ. This corresponds, as intended,
to a controlled rotation gate: if the control qubit (the
electron) is in state j0i, the target qubit (the nuclear spin)
does not evolve; if the control qubit is in state j1i, the target
qubit is rotated around the x axis.
The speed of a logical gate is limited by the average

energy of the quantum system [12,20,21]. The difference
between the energies of the eigenstates in the mS ¼ −1
subspace is 2πAzx and thus for the controlled rotation gate
UCRðαÞ, the minimum gate time is τ ¼ α=2πjAzxj. In our
system, where Azx ¼ 0.110 MHz, a free evolution time of
τ ¼ 4.545 μs corresponds to α ¼ π and reaches the quan-
tum speed limit. Figure 2 shows the evolution trajectory of
the 13C spin on the Bloch sphere when it is initially in j0i. If
the electron is in state j0i, the nuclear spin does not evolve.
If it is in j1i, the nuclear spin evolves from j0i → j1i along
a great circle trajectory, indicating this is the fastest possible
gate for the given system.
Experimental demonstration.—In our experiment we

apply the delay-only UCRðαÞ to the states j00i and j10i
to check its effect when the control qubit is in the state j0i
and j1i, respectively. After the UCRðαÞ operation, we
measure the diagonal elements of the final density operator
in the computational basis [32].
The preparation of the initial state j00i from the

maximally mixed state of the spin system is as follows:
a 532 nm wavelength laser pulse of duration 5 μs and
power ≈0.5 mW sets the electron to its ground state j0i
while the 13C spin remains in the maximally mixed state.
We then swap the states of electron and 13C spins before
resetting the electron spin to the ground state using another
laser pulse [16,25]. After the second laser pulse, the
populations of the states j00i and j01i are 0.91 and

(a) (b)

FIG. 1. (a) Structure of the NV system consisting of an electron
and two nuclear spins: 14N and 13C. The magnetic field is oriented
along the NVaxis which we take to be the z axis. The 13C atom is
at a distance of 0.89 nm from the electron and hence is weakly
coupled. The other nuclei are spinless 12C. (b) Energy levels of
the electron (left) and system subspace consisting of two electron
spin states and the 13C.
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FIG. 2. Bloch sphere representation of the evolution of the 13C
spin initially in state j0i, when the electron spin is in j0i (left) and
j1i (right), during UCRðπÞ. The black diamonds and blue circles
indicate the initial and the final states respectively.
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0.09, respectively [25,32]. To further purify the state, we
use a clean-up operation Ucu of the form ð90°y − d − 90°xÞ,
which selectively removes the spurious population of j01i
from our system subspace to mS ¼ þ1 [33]. Here 90°x=y are
MW pulses acting on the electron spin, with the carrier
frequency set to the transition mS ¼ 0 ↔ þ1, which rotate
the electron spin by 90° around the x=y axis and d ¼
1=2jAzzj is the delay between the two 90°x=y pulses (see the
Supplemental Material [31]). As a result only j00i remains
populated in the computational subspace, and the system
subspace is fully polarized. A similar MW pulse sequence
with opposite pulse phases of the form ð90°x − d − 90°yÞ
selectively removes the population of j00i from the system
subspace to mS ¼ þ1 [32,33], and we call this different
clean-up operation Vcu (see the Supplemental Material
[31]). Below, we show how Vcu can be incorporated as a
part of our readout process.
In the NV system, readout of the state of the system is

performed by counting photons during a laser pulse.
The resulting count rate is a measure of the population
of the ground state mS ¼ 0; the signal therefore represents
the sum of the two populations Pj00i and Pj01i in the states
j00i and j01i, respectively.
To check the effect of UCRðαÞ when the control qubit is

in j0i, we let the initial state j00i evolve under HI for a
variable duration τ ¼ α=2πjAzxj. We then implement
another clean-up operation Vcu, and thus the population
measured during the readout laser pulse corresponds to
Pj01i. In Fig. 3(a), we show the corresponding theoretical
and experimental plots of Pj01i vs τ.

We now check the effect of UCRðαÞ when the control
qubit is in j1i by preparing the initial state j10i, using the
pulse sequence given in Fig. 4: starting from j00i, we apply
an operation Ue

180 ¼ expð−iπsxÞ as a MW pulse resonant
with the transition mS ¼ 0 ↔ −1 with an amplitude of
7 MHz that rotates the electron spin by 180° and exchanges
the states j00i ↔ j10i. During the subsequent delay τ, j10i
evolves to jχi ¼ cosðπAzxτÞj10i þ i sinðπAzxτÞj11i under
the Hamiltonian HI. The numerical simulation of the
probability Pj11iðτÞ ¼ ½1 − cosð2πAzxτÞ�=2 of finding the
system in j11i vs τ is shown in Fig. 3(b).
In order to measure Pj11i, we apply another Ue

180

operation to jχi to flip the electron states mS ¼ −1 ↔
mS ¼ 0 such that jχ0i ¼ Ue

180jχi ¼ cosðπAzxτÞj00i þ
i sinðπAzxτÞj01i followed by another clean-up operation
Vcu. Since Ue

180 flips j11i ↔ j01i, the measured signal
represents Pj11i½χ� ¼ Pj01i½χ0�. The experimental results of
Pj11i vs τ are shown in Fig. 3(b).
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FIG. 3. Theoretical and experimental results to demonstrate the
effect of UCRðαÞ using the delay-only sequence starting from the
initial states j00i (top) and j10i (bottom). (a–b) The plots
represent Pj01i (a) and Pj11i (b) as a function of the evolution
time τ. Pj11i½χ� ¼ Pj01i½χ0� ¼ ½1 − cosð2πAzxτÞ�=2 oscillates from
the initial value of 0 to a maximum of 1 after τ ¼ 4.545 μs,
indicating the effect of UCRðπÞ. (c–d) Diagonal density operator
elements of the final states in the computational basis.

FIG. 4. Pulse sequence to check the effect of UCRðαÞ when the
control qubit is in state j1i.
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FIG. 5. Simulated (top trace) and experimental (bottom trace)
density matrices of the Bell-type state jβi ¼ ðj00i þ ij11iÞ= ffiffiffi

2
p

,
in the computational basis. The left column indicates the real part
of the density matrix, and the right column indicates the
imaginary part. Inset: the pulse sequence to generate this state:
the solid rectangle indicates a 90° MW pulse on the electron with
a phase of 270°, and the delay corresponds to UCRðπÞ.
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We also measured the other diagonal elements of the
final density operators using the procedure of Ref. [32].
The results shown in Figs. 3(c) and 3(d) verify that the state
remains unchanged when the control qubit is in j0i, and
the target qubit is flipped when the control qubit is in j1i.
The experimental state fidelities are >0.98 and >0.99
for Figs. 3(c) and 3(d) respectively. The state fidelity is
F ¼ ðTrðρρtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trðρ2ÞTrðρ2t Þ

p
Þ, where ρt is the target state

and ρ is the experimental final state.
Discussion.—A typical quantum sensing or computing

protocol requires a combination of multiple gates. In such
quantum circuits, integration of our UCRðαÞ with other
gates that require active control fields is a necessity. In the
typical case where two-qubit gates are speed limiting,
efficient two-qubit gates like the one introduced here have
a significant effect on the execution time of the full
protocol. As an example, a Bell state can be prepared
from an initial state ψ0 ¼ j00i by applying a Hadamard
gate on the first qubit followed by a controlled NOT
(CNOT) gate targeting the second qubit [11,12]. We here
replace the Hadamard gate with the pseudo-Hadamard gate
on the electron spin and implement the CNOT gate by the
free evolution. The corresponding pulse sequence to
prepare the Bell-type state is shown in the inset of
Fig. 5. The solid rectangle is a 90° MW pulse that creates
an equal superposition between the electron states j0i and
j1i. After a free evolution of duration τ ¼ 4.545 μs, the
ideal Bell-type state is jβi ¼ ðj00i þ ij11iÞ= ffiffiffi

2
p

. The
simulated density matrix jβsihβsj obtained using the pulse
sequence ð90° − τÞ, where the duration of the initial 90°
MW pulse is 0.125 μs, is shown in the upper trace of Fig. 5.
Its state fidelity with jβihβj is 99.9%. The reconstruction of
the experimental final state using full state tomography [32]
is shown in the lower trace of Fig. 5, and its state fidelity
with jβihβj is 96%. The experimental errors are mainly due
to the uncertainty of ≈2% due to the readout gate
operations required for quantum state tomography [32]
and due to the photon counting statistics of ≈3%.
For multiqubit systems, the implementation of our fastest

gates is limited by the spectral resolution [34]. In such
cases, one can combine our gates with dynamical decou-
pling to extend the T�

2 [23]; this will be a subject of
future work.
Conclusion.—In conclusion, we have introduced a

highly efficient two-qubit gate operation that uses only
free evolution under the static system Hamiltonian.
Here, for a given Hamiltonian, we chose computational
basis states that are not the eigenstates of the system
Hamiltonian. Our scheme to implement the two-qubit gate
does not contribute to the control overhead or to control
errors. To demonstrate our scheme, we choose a quantum
register consisting of a single 13C spin coupled to the
electron spin of a NV center in diamond. The two-qubit
gate efficiency derives from the hyperfine coupling that is
much stronger than the typical Rabi frequencies of the

nuclear spins. Integration of our individual controlled
rotation gates with gates that require active fields can
improve the overall efficiency of the full quantum comput-
ing or quantum sensing protocols.
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