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Porous rocks, foams, cereals, and snow display a diverse set of common compaction patterns, including
propagating or stationary bands. Although this commonality across distinct media has been widely
noted, the patterns’ origin remains debated—current models employ empirical laws for material-specific
processes. Here, using a generic model of inelastic structured porous geometries, we show that the
previously observed patterns can be attributed to a universal process of pore collapse. Furthermore, the
pattern diversity can be mapped in a phase space of only two dimensionless numbers describing material
strength and loading rate.
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Compaction processes in porous media are cru-
cial to understanding avalanche release processes [1,2],
earthquakes [3], biological and structural failures [4,5],
permeability reduction in petroleum extraction [6], and
heterogeneities forming in industrial powder packing [7].
During compression of corresponding media such as snow,
sandstones, bones and foams, granular packs, and ceramics,
various irreversible deformation patterns can be observed,
including diffused compaction and localized “compaction
bands” [8–13]. These bands may be either stationary or
dynamic, where the localized deformed zone propagates
spatially throughout the material. In confined compression
experiments, propagating compaction bands have been
found to screen through rocks only once [14], while in
cereal packs [15,16] and snow [17], they frequently reflect
from boundaries, crossing material points in oscillatory
fashion.
While different patterns can be found within the same

material under various experimental conditions, similar
patterns can be observed across a wide span of other
materials. This raises a question on the origin of such
common compaction patterns. Put differently, what is the

single unique physical trigger to the emergence of the
universally observed compaction patterns within rocks,
cereal packs, and snow? This question remains unan-
swered as most previous research focused on describing
arrays of material-specific processes that are not common
to all the aforementioned materials. Some continuum
models introduced empirical laws to describe additional
strain softening and time-dependent hardening of the
material yielding [17]. Alternatively, other heuristic lat-
tice-spring models were proposed to capture these dyna-
mics [16], without imposing any rate- or time-dependent
hardening, yet involving instead an empirical law for
repetitive crushing of springs. In the following, we
provide evidence supporting that the origin of the diverse
compaction dynamics is linked to the physical micro-
structure of pores, without needing to employ empirical
hardening, softening, or repetitive crushing.
To this aim, we simulate uniaxially confined compres-

sion of structured porous media using the material point
method (MPM) [18]. Similar to the finite element method,
MPM solves the weak form discretization of the mass and
momentum conservation equations. The solid phase of the
structures is discretized into a finite number of particles
(material points) with constant mass and an associated
deformation gradient. No meshing of the material domain
is needed; however, a fixed background grid combined with
particle-grid interpolation facilitates spatial differentiation.
As MPM does not suffer from the mesh distortion issues
typically associated with the classical finite element
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method, this hybrid Eulerian-Lagrangian numerical
scheme is particularly suitable for continuum modeling
of solids under large deformations and with changes in
topology [19,20]. Further details are presented in the
Supplemental Material [21].
The continuous solid phase of the media is simulated

as an elastoplastic material in the “simplest” possible way,
using a Saint Venant-Kirchhoff elastic and von Mises
perfectly plastic solid with a Young’s modulus E,
Poisson’s ratio ν, and yield strength qy such that
ffiffiffiffiffiffiffiffiffi

3
2
s∶s

q

≤ qy, where s ¼ τ − ð1=dÞtrðτÞI denotes the

deviatoric part of the Kirchhoff stress tensor τ, and d
the number of dimensions. Defining the deformed and
undeformed coordinates x and X, respectively, we make
use of the common elastoplastic assumption of decom-
posing the deformation gradient tensor F ¼ ∂x=∂X into
an elastic and a plastic part as F ¼ FEFP. The frame-
indifferent, isotropic, and hyperelastic Saint Venant-
Kirchhoff model relates the stress to the (elastic part of
the) strain εE by

τ ¼ λtrðεEÞI þ 2μεE; ð1Þ

where λ¼fEν=½ð1þνÞð1−2νÞ�g and μ ¼ fE=½2ð1þ νÞ�g
are the Lamé parameters. Moreover, the Hencky strain
tensor is given by

εE ¼ 1

2

X

d

i¼1

log λ2i ni ⊗ ni; ð2Þ

where λi are the principal stretches whose squares are the
eigenvalues of the left Cauchy-Green deformation tensor
bE ¼ FEðFEÞT with corresponding eigenvectors ni.
We start by considering two-dimensional rectangular

structures perforated with 578 regularly spaced square
holes of the same size. Initially, these structures have a
height h0, side length h0=2, and solid area fraction ϕ.
They are subjected to confined uniaxial compression with a
top plate moving down at a constant speed V and zero-
friction slipping boundary conditions. Poisson’s ratio
ν ¼ 0.3, density ρ ¼ 1000 kg=m2, and yield strength
qy ¼ 250 N=m of the solid matrix are kept fixed in the
simulations. In the absence of gravity, the parameter h0 is
arbitrary as it only results in a scaling of time.
With this simple model setup, Fig. 1 reveals different

dynamic compaction patterns depending on the material
and loading parameters. Specifically, we identify six
classes of patterns: (a) nonreflecting compaction band,
(b) reflecting band, (c) crossing bands emerging from the
two ends of the structure, (d) erratic failure scattered
randomly throughout the structure, (e) an explosive com-
paction zone creating a boundary between deformed and
undeformed regions, or (f) buckling of the structural

elements typically causing one or more growing compac-
tion zones. These distinct compaction patterns have been
observed experimentally in various materials. In parti-
cular, class (a) has been seen in steel foams [22] and
sandstone [23,24], (b)–(d) in puffed rice [16], (b),(d) also in
snow [17], (e) in porous aluminum powder samples [25],
and (f) in polycarbonate foams [5].
Furthermore, we find that the patterns can be fully

mapped using only two dimensionless parameters:

S≡ V
ffiffiffiffiffiffiffiffi

E=ρ
p ; R≡ qy

E
; ð3Þ

where S is a Mach number comparing the loading speed to
the elastic wave speed in the solid matrix of the samples,
while R compares the yield strength to the elastic modulus of
the solid matrix. In the phase space defined by S and R, we
categorize the observations into the six classes displayed in
Figs. 1(a)–(f). This is presented in Fig. 2. In addition, we
color the regions in this phase space according to the
deformation mechanism on the microscale. It has been
validated that as long as S and R are kept constant, the
observed patterns do not change for any arbitrary value of
the yield strength qy, density ρ, and Poisson’s ratio ν of the
solid matrix. However, in transitional regions between
different classes, we may observe deformation attributes
of more than one class, and the classification of an experi-
ment is therefore associated with some degree of subjectiv-
ity. While the onset of class (f) is porosity-dependent, as
discussed later, the pattern classification generally holds for
solid area fractions ϕ between approximately 0.25 and 0.75.
On the microstructural level, an unreflected band or a

band with only one reflection is a result of diffuse failure of
the constituent solid column elements as they expand and
fill the surrounding pore spaces upon compression. In the
case of a nonreflecting band, the pore spaces in the first row
are completely filled before the compaction progresses to
the next row of column elements. This process continues
until all pore spaces are filled, at which point the structure is
completely dense and the band has reached the end of the
structure. For bands making one or more reflections, pore
spaces in one row are only partially filled before the plastic
deformations advance to the next row of columns. In order
to reach a dense state, the compaction band must reflect and
return to fill the remaining pore spaces, often with multiple
reflections needed to accomplish this. In cases with two or
more band reflections, the columns do not expand in a
diffusive manner. Instead, we observe the occurrence of
shear bands in the column elements, oriented at �45° as
expected in a von Mises material obeying an associated
flow rule. This causes these columns to bulge out laterally,
effectively thickening the columns as the model permits no
plastic volume change within the solid itself. The defor-
mation then progresses to the next row of elements rather
than immediately filling the current row of voids by
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continuing to compress the thickened columns. While the
band travels through the sample as a moving separation
between two regions of different porosities, the stress on
the top and bottom plates remains largely constant, as
can be seen in the stress-strain curves of Fig. 1(b).
However, when a band reflects from a plate, the stress
level on it suddenly increases, which can be attributed to

increased effective elastic modulus due to the decreasing
porosity.
The erratic class (d) also displays column elements that

shear under compression, but the location of the columns
undergoing plastic deformation is random. Once sheared,
these elements thicken a certain amount, and the plastic
deformation jumps to a different random location. Because

FIG. 1. Typical compaction patterns emanating from a uniaxially loaded confined two-dimensional structured porous media, here with
a solid area fraction of ϕ ¼ 0.40 and the following parameters: (a) S ¼ 4 × 10−3, R ¼ 10−5, (b) S ¼ 4 × 10−3, R ¼ 4 × 10−4,
(c) S ¼ 4 × 10−2, R ¼ 2 × 10−2, (d) S ¼ 1.32 × 10−3, R ¼ 4 × 10−3, (e) S ¼ 10−1, R ¼ 10−5, (f) S ¼ 4 × 10−3, R ¼ 10−1. Contour
plots show the spatiotemporal values of plastic Hencky strain rate _̄εP ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

_εP∶_εP
p

as the samples are compressed until fully dense from
the top under a growing nominally imposed strain ϵ ¼ Vt=h0. Values on those plots are obtained by averaging over the horizontal
direction, neglecting 10% of the area closest to the smooth sidewalls. A snapshot of the structure at ϵ ¼ 0.2 is shown to the left of
each case, colored in terms of the local _̄εP. An enlarged view is shown below, thus highlighting the state of deformation. Supplemental
Movie 1 displays the evolution of the plastic strain rate in the six structures until ϵ ¼ 0.6. The stress σ at the bottom and top plates are
plotted below the corresponding contour plots.
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of the low imposed plate speed, the stress state remains
essentially uniform throughout the structural columns,
similar to the situation of the erratic compaction patterns
observed in lattice-spring systems [16]. This is in contrast
to simulations featuring a (reflecting) compaction band
where there is not sufficient time for the elastic stress wave
to travel down the sample and equilibrate before the
structure yields at the top.
Under low relative strength, R, and high relative imposed

plate speed, S, the system develops a class (e) pattern where
the upper elements are immediately disturbed and flow into
the pores like a plastic fluid, while the lower elements
remain elastic, leaving a separating compaction front in
between. As seen in Fig. 1(e), the stress exerted on the top
plate displays undulations that correspond to the number of
voids in the direction of compression. On the other hand, in
systems with high strength, class (f), the column elements
elastically buckle before plastic deformations occur. From
Euler’s well-known formula for critical buckling load, we
can deduce that the column elements buckle (first mode)
before yielding for R⪆Rcrit ¼ π2a2=12 where a, the aspect
ratio of the columns, is determined by the solid fraction ϕ
of the structure. If ϕ ¼ 0.40, then Rcrit ≈ 0.05, consistent
with the observations in Fig. 2. With smaller or larger ϕ,
the transition to class (f) will occur at lower or higher Rcrit,
respectively.
The speed of a compaction band is related to the number

of reflections the band makes and the porosity of the
sample. Observing that bands cease to exist at an imposed
strain ϵ ¼ 1 − ϕ when the structure has closed all its pores,
it follows that the band speed cb relative to the imposed
plate speed V must be given by cb=V ¼ ð1 − ϕÞ−1 for
nonreflecting bands. For reflecting bands, the ratio cb=V
must be higher, where we let cb refer to the speed of the
band before any reflection has occurred (the speed after

reflection is generally comparable or slightly larger than
before reflection). Given the solid fraction ϕf after the first
reflection, we could find a similar expression cb=V ¼
ð1 − ϕ=ϕfÞ−1 based on analogous mass conservation cal-
culations as per Olsson [24]. For classes (a) and (b) where a
compaction band appears, Fig. 3 shows how the relative
band speed increases with the number of reflections. We
observe that for reflecting bands cb=V increases as a power
law with the dimensionless parameter R=S2 ¼ qy=ðρV2Þ,
independent of elastic modulus. This dimensionless param-
eter gives the ratio between the yield stress of the material
and the inertia stress, characterizing the resistance of the
structure to dynamic impact.
Although only structures with regularly equispaced

voids have been treated so far, it is also instructive to
consider structures with random void location and size.

FIG. 3. Speed cb of the (prereflection) compaction bands,
normalized by the imposed compressive speed V, as a function
of qy=ðρV2Þ in log-log scale. The data points are colored
according to the number of reflections Nr of the compaction
band. Circular and square markers correspond to regular and
random structures, respectively.

FIG. 2. Compaction patterns classified in the space of S and R for a structure with a solid area fraction ϕ ¼ 0.40. Note the separation of
class (b) based on the number of reflections Nr the compaction band displays. The background colors represent the type of deformation
mechanism on the microscale.
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In this case, the compaction pattern ðS; RÞ classification, as
well as the potential band speed, have not been found to
deviate significantly from the regular case with identical
porosity. Band speeds of such random structures have been
included in Fig. 3 for comparison with regular structures.
More details are provided in the Supplemental Material [21],
which further emphasizes the generality of the results by
showing that the dynamic compaction patterns are also not
affected by the dimensionality of the problem. In particular, a
three-dimensional and a pseudo-one-dimensional structure
(i.e., a two-dimensional structure reduced to the smallest
horizontal periodic unit) exhibit reflecting compaction
bands with the same band speed as the corresponding full
two-dimensional structure. In fact, the reduction to a pseudo-
one-dimensional structure was exploited to reduce the
computational cost associated with the many simulations
needed to fully populate Figs. 2 and 3.
The observations presented so far indicate that the

general compaction patterns of the porous media are largely
independent of the porosity, the particular placement and
size of the square pores, the dimensionality of the system,
and the material parameters as long as the Mach number S
and normalized structural strength R remain constant. The
exact combination of these two parameters results in
different elastoplastic deformation of the constituent struc-
tural elements on the microscale. Notably, the varying ways
these microscopic deformation mechanisms lead to pore
collapse is correlated to the emergence of propagating
bands and their reflection. We highlight that the current
model does not rely on any empirical hardening or soft-
ening laws, nor any strain rate-dependent effects or
parameters. In view of developing a homogenized con-
tinuum constitutive model for snow that captures oscilla-
tory compaction bands, Barraclough et al. [17] argued that
such models must account for the interplay between
compression-induced softening and sintering-induced
structural healing. In that model, sintering was added as
a form of time-dependent hardening to control band
reflection (and is undoubtedly an important physical
process in snow). While all previous models [16,17,26]
consider empirical hardening laws to recover reflecting
compaction bands, our observations are in line with Valdes
et al. [26]—both studies demonstrate that rate-dependent
hardening or softening is not necessary for the emergence
of such patterns. Although not having explicitly introduced
any empirical hardening law, the current model considers
the full elastoplastic deformation of the microstructural
elements, which, given appropriate values of S and R, will
elastoplastically deform (thicken) such that they naturally
harden. In the lattice-spring model of Guillard et al. [16]
where the full elastoplastic deformation of the solid
elements is not accounted for (e.g., the springs do not
have a spatial extent and the concept of porosity is not
well-defined), band reflections were therefore not observed
without the addition of a spring hardening law.

In conclusion, this Letter has investigated transient
compaction patterns in porous media through numerical
experiments. In particular, we have shown that propagating
and oscillatory compaction bands can be realized in porous
geometries without needing any empirical hardening or
strain rate-dependent effects. We argue that the required
hardening for band propagation and reflection occurs
naturally and has an origin related to the structural
deformations leading to universal pore collapse, which
can be conceived for any inelastic porous media, including
snow and cereals. It was further demonstrated that the
manifestation of a given compaction pattern depends on
two ratios: one ratio between the yield strength and elastic
modulus, and another between the imposed compression
speed and the elastic wave speed. This study and its
findings are crucial to the understanding and further model
development of porous media mechanics, in particular
critical phase transitions occurring in geophysical ava-
lanches, earthquakes, and meteorite impacts.
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