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Using an SU(2) invariant finite-temperature tensor network algorithm, we provide strong numerical
evidence in favor of an Ising transition in the collinear phase of the spin-1=2 J1-J2 Heisenberg model on the
square lattice. In units of J2, the critical temperature reaches a maximal value of Tc=J2 ≃ 0.18 around
J2=J1 ≃ 1.0. It is strongly suppressed upon approaching the zero-temperature boundary of the collinear
phase J2=J1 ≃ 0.6, and it vanishes as 1= logðJ2=J1Þ in the large J2=J1 limit, as predicted by Chandra et al.,
[Phys. Rev. Lett. 64, 88 (1990)]. Enforcing the SU(2) symmetry is crucial to avoid the artifact of finite-
temperature SU(2) symmetry breaking of U(1) algorithms, opening new perspectives in the investigation of
the thermal properties of quantum Heisenberg antiferromagnets.
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The spin-1=2 Heisenberg model on the square lattice
with nearest-neighbor coupling J1 and next-nearest cou-
pling J2, also known as the J1-J2 model, has imposed itself
as a paradigmatic model of frustrated quantum magnetism
since Chandra and Douçot suggested in 1988 that it could
host a quantum spin liquid phase around J2=J1 ¼ 1=2 [1].
This model, which is realized in various vanadium oxides
[2], has also attracted a lot of attention recently as an
effective model to describe the magnetic properties of iron-
based superconductors [3]. After more than three decades
of very intensive theoretical investigation [4–17], most of
its properties are still debated. At zero temperature, the
presence of an intermediate region with no magnetic long-
range order between Néel order at small J2 and collinear
order at large J2 is well accepted, but the physics in this
intermediate range is still unsettled, with proposals ranging
from a Z2 quantum spin liquid phase to a valence-bond
crystal, and possibly even two intermediate phases [18–20].
Regarding the thermal properties of the model [21,22], the
main open question concerns the possibility of an Ising
transition at finite temperature in the collinear phase, at
which the system is expected to choose between the two
helical states of pitch vectors ð0; πÞ and ðπ; 0Þ. First
predicted in 1990 by Chandra, Coleman, and Larkin
(CCL) [23] on the basis of analytic arguments, direct
numerical evidence for the spin-1=2 case has been impos-
sible to obtain so far. The only case where direct numerical
evidence could be obtained is that of classical spins, for
which extensive Monte Carlo simulations have demon-
strated the presence of a transition in the Ising universality
class [24]. For the spin-1=2 case, quantum Monte Carlo
simulations cannot be used because they suffer from a very
serious minus sign problem, and high-temperature series
expansions have failed to detect a phase transition [25,26],
leading to the suggestion that maybe the critical temper-
ature is equal to zero because of quantum effects. Building

on the Monte Carlo results for classical spins and assuming
that there is collinear order in the ground state, a self-
consistent harmonic approximation has been used to
include quantum fluctuations and come up with a predic-
tion of the J2 dependence of the critical temperature for
various values of the spin [27]. This is not a direct proof
however since it relies on a semiclassical treatment of
quantum fluctuations, and whether a transition is indeed
present for spin-1=2 is still an unsolved issue. For iron-
based superconductors, this is a very important one since
this Ising transition might be at the origin of their electronic
nematicity [3].
In this Letter, we address this problem with tensor

network algorithms and come up with the first direct
evidence of an Ising phase transition in the spin-1=2
J1-J2 model on the square lattice. The method relies on
the representation of the density matrix as a purified
quantum state using auxiliary degrees of freedom [28],
and on the explicit implementation of SU(2) symmetry
during the imaginary time evolution to avoid the artifact of
spontaneous SU(2) symmetry breaking, which is a sys-
tematic problem if the algorithm only respects the U(1)
symmetry. With this algorithm, we have been able to
identify a spontaneous breaking of the C4v symmetry using
a corner transfer matrix renormalization group (CTMRG)
algorithm, and to show that the transition is fully consistent
with the 2D Ising universality class.
The spin-1=2 J1-J2 model on the square lattice is defined

by the Hamiltonian

H ¼ J1
X

NN

Si · Sj þ J2
X

NNN

Si · Sj ð1Þ

where the components of Si are spin-1=2 operators, and
where the sums over NN and NNN refer to pairs of nearest
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and next-nearest neighbors respectively. We will concen-
trate on the case J1; J2 > 0.
Formally, the method relies on evaluating observables in

a thermal ensemble defined by

ρðβÞ ¼ TrancillasjΨðβÞihΨðβÞj

with

jΨðβÞi ¼ e−
1
2
βHjΨð0Þi

where each spin has an ancilla partner, and where jΨð0Þi is
a product of singlets between each spin and its ancilla
partner [28]. At infinite temperature (β ¼ 0), all spin
configurations are equally weighted after the trace over
the ancilla degrees of freedom, while after the evolution in
imaginary time to inverse temperature β, the trace over the
ancilla leads to the canonical density operator ρðβÞ. It is
represented as a tensor product, and one proceeds in two
steps: (i) calculation of the purified wave function jΨðβÞi
and (ii) contraction of the tensor network to calculate
observables.
For the purpose of identifying spontaneous symmetry

breaking, it is of course crucial for ΨðβÞ to keep all
symmetries of the problem. When C4v symmetry breaking
occurs, ΨðβÞ should keep equal weight contributions for
the two different symmetry sectors, and its elementary
tensors should stay symmetric. It should only be through
the CTMRG process that one sector is selected and C4v
symmetry is spontaneously broken in the observables.
However, in practice, step (i) can only be done approxi-
mately by keeping a finite bond dimension after each
Trotter step of the imaginary time evolution, and this can
lead to two types of artifacts: (a) ΨðβÞ explicitly breaks
SU(2) symmetry—weights inside a multiplet are different.
This artifact must absolutely be avoided because it occurs at
rather high temperature and is accompanied by a breaking
of C4v symmetry, thus masking the transition we are
looking for. To overcome it, we have modified the
algorithm to implement SU(2) symmetry at the tensor
level [29,30], preventing any symmetry breaking. (b) ΨðβÞ
is SU(2) symmetric but nevertheless explicitly breaks the
C4v symmetry—horizontal and vertical bonds are no longer
equivalent. This is less of a problem because this artifact
occurs at rather low temperature, and for all parameters for
which we report results, the actual transition occurs above
this artifact.
We now briefly give some details about the exact

algorithmic setup. More information can be found in the
Supplemental Material [31]. Our method is based on
infinite projected entangled pair states (iPEPS) [35] at
finite temperatures [36–39], whose accuracy is controlled
by the bond dimensionD. We used a next-nearest neighbor
simple update [40,41] to apply imaginary time evolution on
a 2 × 2 unit cell. While the value of the finite imaginary

time steps may shift the temperature where explicit sym-
metry breaking occurs, it makes little change on the
observables before this artifact. With SU(2) symmetry
implemented, D cannot be set arbitrarily and must respect
virtual space decomposition into SU(2) multiplets. The
algorithm dynamically finds the most relevant symmetry
sectors by keeping a fixed number of independent multip-
lets in the truncations. We observed that this decomposition
does not depend on J2 and pins D to the values
D ∈ f1; 4; 7; 8; 11; 16; 19; 22g. To contract the tensor net-
work and compute observables, we used the asymmetric
CTMRG algorithm [42–45]. Numerical precision is less
crucial here than in the optimization part and we only
implemented the less technical U(1) symmetry [46,47]. The
accuracy of the contraction is controlled by the corner
dimension χ.
We compute the reduced density matrices for nearest and

next-nearest neighbor pairs, which allows us to extract the
mean energy per site.We have benchmarked our results with
high-temperature series expansion results [48] and found
perfect agreement at high temperature (see the Supplemental
Material [31]). The specific heat is then obtained by
numerical derivative of the energy. For the order parameter
associated withC4v symmetry breaking, we have chosen the
(non-normalized) difference betweenvertical and horizontal
nearest-neighbor bonds inside the unit cell:

σ ¼
X

hi;ji;v
Si · Sj −

X

hi;ji;h
Si · Sj: ð2Þ

Several correlation lengths ξi can be extracted from the
CTMRG-approximated transfer matrix eigenvalues accord-
ing to 1=ξi ¼ ln jλ1=λij, where λi is the ith largest eigen-
value. The degeneracy of the eigenvalues can be used to
classify these correlation lengths according to SU(2)
representations. This allows one in particular to distinguish
the magnetic correlation length, a triplet diverging at zero
temperature, from the Ising correlation length, a singlet
diverging at the critical temperature.
Let us start the presentation of the results by a thorough

discussion of the case J2=J1 ¼ 0.85. For D ≤ 11, the
artifact of the C4v symmetry breaking of ΨðβÞ during
imaginary time evolution occurs at a fairly high temper-
ature, and we did not find any evidence of a phase transition
above it. However, for D ¼ 16, we observe clear signs of a
phase transition at a temperature Tc=J1 ≃ 0.093, as shown
in Figs. 1 and 2: (i) the energy has a singularity; (ii) the
specific heat has a very narrow peak at T=J1 ≃ 0.093,
below a broad maximum at a higher temperature typical of
antiferromagnets; (iii) the order parameter takes off very
abruptly; and (iv) the correlation length diverges on both
sides of the transition.
This phase transition is fully compatible with the 2D

Ising universality class [49]. First of all, the diverg-
ing correlation length corresponds to a nondegenerate
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eigenvalue, in agreement with the scalar order parameter of
Eq. (2). The development of this order parameter is very
steep, consistent with a small exponent β, and assuming
β ¼ 1=8 leads to a critical temperature Tc=J1 ≃ 0.093 that
is compatible with the peak of the specific heat and the
divergence of the correlation length. With this critical
temperature, the exponent of the correlation length mea-
sured not too close to the critical temperature is consistent

with ν ¼ 1 (very close to the phase transition, the critical
behavior is sensitive to the finite value of χ). Finally, the
behavior of the energy close to the transition is compatible
with T logðTc − TÞ, in agreement with the expected log-
arithmic divergence of the specific heat (α ¼ 0).
Interestingly, the largest triplet eigenvalue of the transfer

matrix, which is only smaller than the next-to-leading
singlet eigenvalue in a narrow parameter range, and the
associated correlation length, which governs the decay of
the spin-spin correlation function, continues to grow at low
temperature, a behavior consistent with the expected
divergence at zero temperature for a 2D antiferromagnet
with long-range order.
The same analysis can be extended to larger values of

J2=J1 up to J2=J1 ¼ 1.80. For J2=J1 ≥ 2, no transition
could be detected before the artifact of the C4v symmetry
breaking of ΨðβÞ occurs. The results for Tc=J1 and Tc=J2
are plotted in Figs. 3(a) and 3(b) respectively. At fixed χ,
the finite corner dimension leads to an overestimation of the
critical temperature: indeed a finite χ imposes a finite
effective correlation length ξðχÞ < ξð∞Þ. Accordingly, in
the region where the infinite system is still disordered, but
ξðχÞ is significantly smaller than the physical correlation
length ξð∞Þ, hence smaller than the typical size of ordered
domains, we measure a nonzero order parameter which
then vanishes when using a larger χ. Away from the
transition, only small values of χ are needed for the
observables to converge [see Fig. 1(c)]. Hence we set
our upper bound as the lowest temperature where σ ¼ 0 for
our largest χ and the lower bound as the highest temper-
ature where jσj > 0 is converged in χ.
While D ¼ 16 is the smallest bond dimension for which

we observe a phase transition, we also considered larger
bond dimensions. For large J2=J1, the dependence on D is
smaller than the error bars due to the finite value of χ.
For smaller values of J2, the results change significantly

(a) (b) (c)

FIG. 2. Spectrum of transfer matrix and correlation length for
J2 ¼ 0.85 with D ¼ 16 and χ ¼ 256. Beyond the phase tran-
sition, horizontal and vertical lengths differ, and we plot only the
smallest one for readability. The gray area denotes the range
below which the simple update has an unphysical artifact.
(a) Eigenvalues of the transfer matrix λi=λ0. The multiple level
crossings are typical of a second order phase transition. The
singlet that becomes the largest eigenvalue in a narrow temper-
ature range corresponds to the correlation length ξσ of the Ising
order parameter. (b) Largest singlet correlation length ξσ . Close to
the transition, its value is bounded by finite-χ effects. (c) Inverse
of ξσ , showing the compatibility with ν ¼ 1.

(a) (b) (c)

FIG. 1. Various observables versus temperature for J2 ¼ 0.85
with D ¼ 16. The black dotted line marks the estimated critical
temperature Tc=J1 ¼ 0.093. The gray area denotes the range
below which the simple update has an unphysical artifact.
(a) Energy per site. The fit corresponds to a critical exponent
α ¼ 0 with reduced temperature τ ¼ 1 − T=Tc. (b) Specific heat.
Inset: enlargement around Tc. (c) Order parameter jσj [see
Eq. (2)]. It can be very well fitted with an Ising critical exponent
β ¼ 1=8. The inset displays the same data in a semilog scale in τ.

(a) (b) (c)

FIG. 3. Phase diagram of the J1-J2 model. Left: critical
temperature as a function of J2=J1. Our results are consistent
with a critical temperature vanishing at the quantum critical point
J2c=J1 ∼ 0.6. Center: critical temperature in units of J2. The
curve reaches a maximum before going to 0 for J2 → ∞. Right:
test for the analytical prediction Tc ¼ aJ2=ð1þ b log J2=J1Þ in
the large J2=J1 limit.
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between D ¼ 16 and D ¼ 19, and Tc systematically
increases from D ¼ 16 to D ¼ 19, a strong indication that
it does not vanish in the infinite bond dimension limit. In
addition, we have been able to converge a small number of
points for the very challenging bond dimension D ¼ 22.
These results sit between D ¼ 16 and D ¼ 19, and very
close to the D ¼ 19 case. Therefore we believe that our
results at D ¼ 19 give a reasonably accurate quantitative
estimation of the critical temperature of the model.
The phase diagram calls for a few general remarks. First,

the critical temperature appears to go to zero at the critical
ratio where collinear order sets in, as in the classical case. In
the opposite limit of large J2=J1, Tc=J2 also decreases, and,
as we shall see, the behavior is consistent with CCL, whose
theory predicts that Tc=J2 vanishes as 1= logðJ2=J1Þ. The
maximum occurs around J2=J1 ¼ 1.0, with Tc=J2 ≃ 0.18.
At intermediate values of J2=J1, the overall behavior of

Tc=J2 as a function of J2=J1 agrees qualitatively with the
analysis of Capriotti et al., with a flat maximum around
J2=J1 ≃ 1, and a slow decrease at larger J2=J1, as predicted
by CCL. The maximal value of Tc=J2 ≃ 0.18 is smaller
than that of Capriotti et al., Tc=J2 ≃ 0.24, but considering
the nature of the approach of Capriotti et al., which is
semiclassical in essence, such a semiquantitative agreement
for spin-1=2 is very satisfactory.
In the large J2=J1 limit, CCL’s approach predicts that

the critical temperature decreases asymptotically as
Tc=J2 ¼ aJ2=ð1þ b log J2=J1Þ. We tested this prediction
in Fig. 3(c), and the three largest values of J2 are already
consistent with this semilog asymptotic behavior, with
a ¼ 0.17, b ¼ 0.52 for D ¼ 16 and a ¼ 0.20, b ¼ 1.08
for D ¼ 19. Note that this regime was not accessible in the
investigation of the classical case by Weber et al. [24]
because b ¼ 0.135 is much smaller in that case, and
logarithmic corrections would only be visible for values
of J2much larger than J2=J1 ¼ 2, the largest value forwhich
an Ising transition could be detected. So the present results
constitute to the best of our knowledge the first numerical
confirmation of the asymptotic behavior at largeJ2 predicted
in CCL. Note that our values of b are consistent with the
prediction based on CCL by Weber et al., b ¼ 0.78, while
our value for the overall slope a is significantly smaller than
the estimate based on CCL, a ¼ 0.496, a trend already
observed for the classical case and attributed to the lack of
quantitative information on the actual height of the energy
barrier to go from one domain to the other.
Let us now discuss in more detail the small J2 case. All

zero temperature simulations [15,18–20] point to a tran-
sition from a gapped phase (a Z2 spin liquid or a valence-
bond solid phase) to the collinear phase around
J2=J1 ¼ 0.6. This is roughly consistent with our numerical
results if we assume that Tc vanishes linearly upon
reducing J2=J1: a linear extrapolation of the last two
points crosses the horizontal axis at J2=J1 ≃ 0.6.
However, our results would be hard to reconcile with

the zero-temperature results if, as in the classical case in
Ref. [24], Tc was vanishing as a square root, with a vertical
slope. Such a behavior would only be consistent with a
critical temperature vanishing at a much larger value of
J2=J1, of the order of 0.75. However, the argument put
forward by Weber et al. to explain the square root behavior
does not apply to the quantum case. In the classical case,
the collinear phase is in competition with the Néel phase at
finite temperature, and the Néel phase is favored by thermal
fluctuations, leading to a cross-over temperature that bends
toward the collinear phase. This cross-over temperature
grows as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2=J1 − 1=2

p
and sets an upper bound to the

Ising temperature, which was found numerically to follow
the same behavior. In the spin-1=2 case, by contrast, the
collinear phase is believed to be in competition with a
gapped phase (be it a Z2 phase or a valence-bond solid
phase), and thermal fluctuations are expected to favor the
collinear phase since the entropy grows as a power law in
an ordered phase but is exponentially small in a gapped
phase. So the cross-over temperature is expected to bend
toward the gapped phase and cannot serve as an upper
bound to the Ising transition.
An alternative explanation is that the vanishing of the

critical temperature at the boundary of the collinear phase is
related to the vanishing of the spin stiffness in the collinear
phase. Indeed, exact diagonalizations [50] and Schwinger
bosons [51] both point to a rapid but continuous and linear
suppression of the spin stiffness around J2=J1 ¼ 0.6–0.65
for the spin-1=2 case. Now, the energy scale of the effective
Ising model that would describe this transition is set by the
energy of a domain wall between two collinear domains
with wave vectors ð0; πÞ and ðπ; 0Þ respectively, and this
energy is expected to vanish if the stiffness vanishes. So,
our results can be explained by a vanishing stiffness. Note
however that we have not been able to get results at smaller
values of J2=J1 because the CTMRG algorithm stops
converging at low temperature for J2=J1 ¼ 0.75. Further
improvements (if at all possible) would be necessary to get
reliable results in that range. In any case, the scenario put
forward by Capriotti et al. [27], with a critical temperature
vanishing at J2=J1 ≃ 0.6 as a square root, as in the classical
case, is not supported by our results.
To summarize, using the finite-temperature version of

iPEPS, we have provided the first unambiguous and direct
evidence of a thermal Ising transition in the collinear phase
of the spin-1=2 J1-J2 model on the square lattice. It
corresponds to the spontaneous breaking of the C4v
symmetry, and the Ising 2D universality class has been
demonstrated by a careful analysis of the order parameter,
the correlation length, the energy, and the specific heat.
Although limited, the range of values we could study,
0.8 ≤ J2=J1 ≤ 1.8, turned out to be enough to probe the
small J2=J1 regime, with evidence that Tc goes to zero
linearly when J2=J1 approaches 0.6, the intermediate
regime, with a maximum of Tc=J2 ¼ 0.18 around
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J2=J1 ¼ 1.0, and the large J2=J1 regime, where we have
been able to confirm the prediction of Chandra et al., that
Tc=J2 vanishes as 1= logðJ2=J1Þ.
Beyond the J1=J2 model, we note that our approach relies

on the implementation of the full SU(2) symmetry, which
turnedout to be crucial to obtainvalid results.With the SU(2)
symmetry implemented, this algorithm proved to be very
robust and to give access to a large part of the phase diagram
down to very low temperatures, previously out of reach by
other methods. This opens the way to a systematic inves-
tigation of the thermal properties of frustrated quantum
Heisenbergantiferromagnets, andmoregenerallyof strongly
correlated systems for which quantum Monte Carlo
simulations suffer from a severe minus sign problem.

We acknowledge very useful discussions with Philippe
Corboz and Andreas Läuchli. This work has been
supported by the Swiss National Science Foundation.
O. G. thanks Sylvain Capponi and Didier Poilblanc for
insightful discussions and Fabien Alet, Juraj Hasik, and
Loïc Herviou for advice with the code.

*Corresponding author.
olivier.gauthe@epfl.ch

[1] P. Chandra and B. Douçot, Phys. Rev. B 38, 9335
(1988).

[2] R. Nath, A. A. Tsirlin, H. Rosner, and C. Geibel, Phys. Rev.
B 78, 064422 (2008).

[3] Q. Si, R. Yu, and E. Abrahams, Nat. Rev. Mater. 1, 16017
(2016).

[4] M. P. Gelfand, R. R. P. Singh, and D. A. Huse, Phys. Rev. B
40, 10801 (1989).

[5] N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989).

[6] E. Dagotto and A. Moreo, Phys. Rev. Lett. 63, 2148 (1989).
[7] F. Figueirido, A. Karlhede, S. Kivelson, S. Sondhi, M.

Rocek, and D. S. Rokhsar, Phys. Rev. B 41, 4619 (1990).
[8] R. F. Bishop, D. J. J. Farnell, and J. B. Parkinson, Phys. Rev.

B 58, 6394 (1998).
[9] H.-C. Jiang, H. Yao, and L. Balents, Phys. Rev. B 86,

024424 (2012).
[10] W.-J. Hu, F. Becca, A. Parola, and S. Sorella, Phys. Rev. B

88, 060402(R) (2013).
[11] S.-S. Gong, W. Zhu, D. N. Sheng, O. I. Motrunich, and

M. P. A. Fisher, Phys. Rev. Lett. 113, 027201 (2014).
[12] D. Poilblanc and M. Mambrini, Phys. Rev. B 96, 014414

(2017).
[13] R. Haghshenas and D. N. Sheng, Phys. Rev. B 97, 174408

(2018).
[14] S.-L. Yu, W. Wang, Z.-Y. Dong, Z.-J. Yao, and J.-X. Li,

Phys. Rev. B 98, 134410 (2018).
[15] L. Wang and A.W. Sandvik, Phys. Rev. Lett. 121, 107202

(2018).
[16] W.-Y. Liu, S. Dong, C. Wang, Y. Han, H. An, G.-C. Guo,

and L. He, Phys. Rev. B 98, 241109(R) (2018).
[17] J. Hasik, D. Poilblanc, and F. Becca, SciPost Phys. 10, 012

(2021).

[18] F. Ferrari and F. Becca, Phys. Rev. B 102, 014417
(2020).

[19] W.-Y. Liu, S.-S. Gong, Y.-B. Li, D. Poilblanc, W.-Q. Chen,
and Z.-C. Gu, Sci. Bull. (2022).10.1016/j.scib.2022.03.010

[20] Y. Nomura and M. Imada, Phys. Rev. X 11, 031034
(2021).

[21] D. Poilblanc, M. Mambrini, and F. Alet, SciPost Phys. 10,
019 (2021).

[22] N. Niggemann, B. Sbierski, and J. Reuther, Phys. Rev. B
103, 104431 (2021).

[23] P. Chandra, P. Coleman, and A. I. Larkin, Phys. Rev. Lett.
64, 88 (1990).

[24] C. Weber, L. Capriotti, G. Misguich, F. Becca, M. Elhajal,
and F. Mila, Phys. Rev. Lett. 91, 177202 (2003).

[25] R. R. P. Singh, W. Zheng, J. Oitmaa, O. P. Sushkov, and C. J.
Hamer, Phys. Rev. Lett. 91, 017201 (2003).

[26] G. Misguich, B. Bernu, and L. Pierre, Phys. Rev. B 68,
113409 (2003).

[27] L. Capriotti, A. Fubini, T. Roscilde, and V. Tognetti, Phys.
Rev. Lett. 92, 157202 (2004).

[28] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Phys. Rev.
Lett. 93, 207204 (2004).

[29] S. Singh and G. Vidal, Phys. Rev. B 86, 195114 (2012).
[30] P. Schmoll, S. Singh, M. Rizzi, and R. Orús, Ann. Phys.

(Amsterdam) 419, 168232 (2020).
[31] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.128.227202 for (i) a
detailed explanation of the iPEPS algorithm; (ii) a bench-
mark with high temperature series expansion data Ref. [48]
and (iii) a thoughtful discussion of the simple update
symmetry breaking artifact and its impact. The Supplemen-
tal Material includes Refs. [32–34].

[32] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[33] A. Wietek, P. Corboz, S. Wessel, B. Normand, F. Mila, and

A. Honecker, Phys. Rev. Research 1, 033038 (2019).
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