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We perform large-scale quantum Monte Carlo simulations of SLAC fermions on a two-dimensional
square lattice at half filling with a single Dirac cone with N ¼ 2 spinor components and repulsive on-site
interactions. Despite the presence of a sign problem, we accurately identify the critical interaction strength
Uc ¼ 7.28� 0.02 in units of the hopping amplitude, for a continuous quantum phase transition between a
paramagnetic Dirac semimetal and a ferromagnetic insulator. Using finite-size scaling, we extract the critical
exponents for the corresponding N ¼ 2 chiral Ising Gross-Neveu universality class: the inverse correlation
length exponent ν−1 ¼ 1.19� 0.03, the order parameter anomalous dimension ηϕ ¼ 0.31� 0.01, and the
fermion anomalous dimension ηψ ¼ 0.136� 0.005.
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Introduction.—Massless Dirac fermions have been iden-
tified as the relevant low-energy quasiparticles in various
condensed matter systems including graphene, topological
insulators, d-wave superconductors, Weyl semimetals, and
ultracold fermions in optical lattices [1–7]. Nonetheless,
strong interactions can generate a finite mass for the Dirac
fermions and spontaneously break some of the symmetries
of the model. The quantum phase transitions at which this
occurs are typically described by the Gross-Neveu (GN)
university classes [8]. In particular, a single Dirac cone in
(2þ 1)D subject to on-site repulsive interactions—such as
can be found on the surface of a correlated topological
insulator—can develop an Ising-type ferromagnetic (FM)
order, which generates a Z2 symmetry-breaking FM mass
gap [9,10]. For a chemical potential at the Dirac point, the
quantum critical point (QCP) of the resulting transition
from semimetal (SM) to insulator is believed to belong to
the chiral Ising GN universality class [11–16] with N ¼ 2
Dirac spinor components.
Useful insights for the N ¼ 2 chiral Ising GN univer-

sality class have been obtained from several approaches
including the conformal bootstrap, the functional renorm-
alization group (FRG), and analytical field theory methods
such as large-N and ϵ expansions. However, these methods
so far yield inconsistent results. For example, while the
conformal bootstrap [17] predicts ν−1 ¼ 0.86, FRG [18]
and the ϵ expansion [16] predict ν−1 ¼ 1.229 and
ν−1 ¼ 1.276, respectively. (For other critical exponents,
see Table I.) These significant discrepancies demand a
resolution from numerically exact quantum Monte Carlo
(QMC) simulations which have been unavailable thus far.
The lack of QMC studies of this problem originates in part

from fermion-doubling theorems which state that a local
lattice model cannot realize a single symmetry-protected
Dirac cone [19]. Indeed, all previous QMC studies of chiral
Ising GN criticality have utilized local lattice models and
thus could only access even numbers of Dirac cones, e.g.,
N ¼ 4 [20–23] and N ¼ 8 [24–28].
In this Letter, we instead use a nonlocal lattice realization

of a single Dirac fermion with N ¼ 2 spinor components,
known as the SLAC fermion [29–31], subject to an on-site
Hubbard repulsion. By employing a state-of-the-art aux-
iliary-field QMC algorithm, we identify and investigate its
FM QCP for the first time [32]. The model is not entirely
sign-problem free, but the sign problem is benign at the
QCP (Fig. 1) [36]. In this work, we have taken up to several
billion measurements to keep the statistical error below

(a) (b)

FIG. 1. Behavior of the sign problem in PQMC with gGW ¼
0.17U close to the QCP (U ¼ 7.275). (a) Decoupling the
Hubbard interaction in the sx channel enhances the average sign
compared to the usual sz channel (here β≡ 2Θ). (b) Average sign
of PQMC at 2Θ ¼ 14 (βeff ≈ 25� 1) and U ¼ 7.275 as a
function of linear system size L.
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0.2% [37]. This approach allows us to circumvent the sign
problem and accurately extract the critical exponents of the
N ¼ 2 chiral Ising GN universality class (Table I), our main
result.
Model.—We consider an L × L square lattice with unit

lattice constant having a single linearly dispersing Dirac
cone in its first Brillouin zone. The free Hamiltonian in
momentum space is given by

H0 ¼
X

p

Ψ†
pðpxσx þ pyσyÞΨp; ð1Þ

withΨ†
p ¼ ðc†p↑; c†p↓Þ where cð†Þpσ is the electron annihilation

(creation) operator with momentum p ¼ ðpx; pyÞ and spin
σ, and σα, α ¼ x, y, z are the Pauli matrices operating on the
spin degree of freedom. We extract the real-space repre-
sentation of the above Hamiltonian by performing a Fourier
transformation, which yields

H0 ¼
X

i

X

R

ðtRc†i↑ciþR↓ þ H:c:Þ; ð2Þ

where cð†Þiσ is the electron annihilation (creation) operator on
site i with spin σ, and tR denotes the electron hopping
amplitude between site i and iþR. Here, R ¼ ðRx; RyÞ
enumerates all neighbors of site i along the x and y
directions. The explicit form of tR is

tR ¼ ið−1ÞRx

L
π sinðπRx

L Þ δRy;0 þ
ð−1ÞRy

L
π sinð

πRy

L Þ
δRx;0; ð3Þ

where the overall hopping amplitude has been set to unity.
Note that Eq. (3) introduces electron hopping beyond
nearest neighbors. We add a local repulsive Hubbard
interaction,

HU ¼ U
X

i

ðni↑ − 1=2Þðni↓ − 1=2Þ; ð4Þ

where U > 0 is the interaction strength and niσ ¼ c†iσciσ is
the electron number operator. For sufficiently large U, we
expect long-range Ising FM order in the z direction, which
breaks time-reversal symmetry spontaneously and gaps out
the Dirac cone. At half-filling, the single-particle density of

states vanishes, thus we expect a line of finite-temperature
transitions that terminates at a zero-temperature QCP with
finite critical interaction strength Uc [22].
QMC method.—We employ a projector QMC (PQMC)

method to analyze the quantum phase transition in our
model system. In this method, the ground-state expectation
value of an observable O is calculated using imaginary-
time propagation of a trial wave function jΨTi via
ðhΨ0jOjΨ0i=hΨ0jΨ0iÞ ¼ limΘ→∞ðhΨT je−ΘHOe−ΘHjΨTi=
hΨT je−2ΘHjΨTiÞ. Here, we follow the approach introduced
in Ref. [38] and choose an interacting trial wave function to
further enhance the performance and convergence of the
PQMC algorithm. We consider a Gutzwiller-projected

wave function jΨTi ¼ e−gGW
P

i
ni;↑ni;↓ jFSi which can be

easily implemented as our trial state within QMC. Here,
jFSi is the noninteracting Fermi sea, and gGW is the
Gutzwiller variational parameter whose optimal value
follows the approximate relation gGW ≈ 0.17U. We perform
calculations for system sizes L∈f5;7;9;11;13;15;17;19g,
and use an imaginary projection time of 2Θ ¼ 14 which is
long enough to obtain ground-state properties. To demon-
strate this, in Supplemental Material [32] we compare
the performance of PQMC with a nontrivial Gutzwiller-
projected state against regular PQMC (gGW ¼ 0) as well as
finite-temperature QMC. We find that the algorithm with
gGW ≠ 0 converges to the ground state the fastest.
Moreover, an effective inverse temperature βeff can be
defined for a given projection time Θ such that the PQMC
results are approximately equivalent to finite-temperature
QMC results at temperature T ¼ 1=βeff . We find that
βeffðgGW≠0Þ≈2Θþ11�1 while βeffðgGW¼0Þ≈2Θþ7�1.
Our PQMCmethod with gGW ≠ 0 and 2Θ ¼ 14 thus allows
us to effectively reach temperatures as low as βeff¼25�1,
which is sufficient to elucidate ground-state physics.
Although QMC is an unbiased method and is very

effective for studying lattice models of strongly correlated
electrons, its negative sign problem hinders its application
to many problems of interest [39]. Nonetheless, the sign
problem in QMC depends highly on the model’s formu-
lation, such that one may improve the energy scales that
QMC can reach by choosing appropriately the Hubbard-
Stratonovich (HS) decoupling of the interaction term. For
the present model, the average sign is significantly higher if
we decouple the interaction in the sx or sy channels
rather than the usual sz channel [Fig. 1(a)] [32]. With that
decoupling, Fig. 1(b) shows that the average sign of our
model at the QCP is not very severe, and we can reach
sufficiently low temperatures to accurately predict ground-
state properties.
FM transition.—We probe FM ordering in our model by

computing the spin-spin correlation function,

Mij ¼ hsz;isz;ji; ð5Þ

whose Fourier transform is the spin structure factor:

TABLE I. Our QMC evaluation of the critical exponents for the
N ¼ 2 chiral Ising GN universality class, compared with previous
estimates.

ν−1 ηϕ ηψ

This work (QMC) 1.19�0.03 0.31�0.01 0.136�0.005
Conformal bootstrap [17] 0.86 0.320 0.134
FRG [18] 1.229 0.372 0.131
ϵ expansion [16] 1.276 0.2934 0.1400
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SðkÞ ¼ 1

L4

X

ij

eik·ði−jÞMij; ð6Þ

where sz;i ¼ 1
2
ðni↑ − ni↓Þ denotes the z component of the

electron spin operator at site i. In the broken-symmetry
phase at largeU, we expect long-range order at wave vector
k ¼ 0 and the condensation of the sz;i operator in the
thermodynamic limit.
To explore the SM-to-FM QCP in QMC, we use two

dimensionless quantities: the Binder ratio, defined here as

B≡
P

ijklhsz;isz;jsz;ksz;li
ðPijhsz;isz;jiÞ2

; ð7Þ

and the correlation ratio, defined as

R1;1 ≡ 1 −
Sðk ¼ k�Þ
Sðk ¼ 0Þ ; ð8Þ

where we define k� ≡ ð2π=LÞðx̂þ ŷÞ. Long-range FM
ordering makes Sðk ¼ 0Þ diverge and hence implies
R1;1 → 1 in the thermodynamic limit L → ∞. In the
disordered SM phase, the correlation ratio vanishes in
the thermodynamic limit since Sðk → 0Þ → Sðk ¼ 0Þ. At
the QCP, both B and R1;1 are independent of L up to finite-
size corrections. Therefore, we pinpoint the QCP by
plotting these ratios as a function of U for various lattice
sizes, and look for a crossing point of the curves. Using the
Binder ratio, we identify the QCP to be 7.275⩽Uc⩽7.3
[Fig. 2(a)]. The correlation ratio suggests the compatible
result 7.25⩽Uc⩽7.275 [Fig. 2(b)].
To further corroborate these results, we also measure the

fermion excitation gapΔSP as a function ofL andU using the
unequal-time fermion Green’s function [32]. In the thermo-
dynamic limit, we expect LΔSPðL → ∞; U < UcÞ → 0 in
the gapless SM phase. Thus, we can estimate the position of
the QCP by plotting LΔSPðL;UÞ against 1=L and extrapo-
lating to L ¼ ∞ (see Fig. 3). This suggests 7.2 < Uc < 7.3,
consistent with the previous two approaches. These
three methods combined indicate that Uc ≈ 7.275. In
Supplemental Material [32], we have computed B and
R1;1 using finite-temperature QMC with β ¼ L [25,40,41]
for L up to 15 and achieve 7.25 < Uc < 7.3, consistent with
our PQMC results.
Critical exponents.—Having obtained a good estimate of

Uc, we now turn to calculating universal critical exponents
directly at the QCP. Those exponents describe the power-law
decay of various correlation functions at the QCP. In
Fig. 2(c), we plot the FM spin susceptibility, Sðk ¼ 0Þ,
for interaction strengths U ¼ 7.25, 7.275, and 7.3. The spin
susceptibility is expected to decay as L−ð1þηϕÞ at the critical
point for an L × L system. Figure 2(c) shows that the finite-
size effects in the two-particle spin (bosonic) sector are
insignificant as all data points follow a single straight line on

a log-log scale. Our results in Fig. 2(c) thus suggest the
anomalous dimension of the bosonic order parameter, ηϕ,
satisfies 0.282 < ηϕ < 0.352. Likewise, the equal-time fer-
mion single-particle Green’s function in momentum space,

(a) (b)

(c) (d)

FIG. 2. (a) Binder ratio B and (b) correlation ratio R1;1 as a
function of U for various L (various symbols). The crossing point
corresponds to Uc. We identify 7.25 < Uc ≲ 7.3 using these two
methods. (c) FM spin susceptibility Sk¼0 and (d) equal-time
fermion Green’s function Gk¼k� for various system sizes close to
the critical point (U ¼ 7.25, 7.275, 7.3). The observed linear
behavior on a log-log scale is consistent with the expected power-
law decay Sk¼0 ∼ L−ð1þηϕÞ and Gk¼k� ∼ L−ηψ at criticality. The
negative of the slope h is included for each U. We find ηϕ ¼
h − 1 ≈ 0.31 and ηψ ¼ h ≈ 0.135 by taking the average across all
three values of U.

FIG. 3. Fermion single-particle gapΔSP as a function of 1=L for
various values of U, which suggests 7.2 < Uc < 7.3.
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Gk¼k� , must decay as L−ηψ , where ηψ is the anomalous
dimension of the fermion operator at criticality. Accordingly,
Fig. 2(d) shows that 0.129 < ηψ < 0.140.We obtained these
numbers by taking the last five data points (L ¼ 11, 13, 15,
17, 19) for fermions.We see thatL ¼ 9 follows the same line
while L ¼ 5, 7 exhibit visible deviations. This implies that
finite-size effects are more pronounced in the fermionic
sector. Among the three interaction strengths used in
Figs. 2(c) and 2(d), our Binder∶correlation ratio analysis
suggests Uc is closer to 7.275. Thus, we conclude ηϕ ≈
0.30� 0.02 and ηψ ≈ 0.135� 0.005.
Alternatively, we can use the scaling hypothesis and data

collapse near (but away from) the QCP to simultaneously
obtain estimates of the critical exponents as well as Uc.
Scaling forms for bosonic and fermionic correlation func-
tions can be used to extract ηϕ and ηψ . We begin with the
spin structure factor. At β ¼ ∞ or β ¼ L and near the QCP,
scaling analysis reveals that [42]:

L1þηϕSk¼0ðL;UÞ ¼ ð1þ α1L−ω1Þf1ðuL1=νÞ; ð9Þ

where u ¼ U −Uc, ν is the correlation length exponent,
and f1 is a smooth scaling function of uL1=ν. The term
proportional to L−ω1 is an effective correction-to-scaling
term which can be ignored for large systems. For Sk¼0

we find that those corrections are negligible and we
achieve satisfactory results by keeping the leading scaling
term. Such a simplified scaling hypothesis, namely
L1þηϕSk¼0ðL;UÞ ¼ f1(ðU −UcÞL1=ν), allows the follow-
ing data-collapse method to extract the critical exponents.
By plotting all available data points in the L1þηϕSk¼0ðL;UÞ
combination against ðU − UcÞL1=ν and tuning Uc, ν, and
ηϕ to achieve a single smooth curve rather than scattered
data points, we can identify both the critical exponents ν
and ηϕ and the critical point Uc [Fig. 4(a)]. This method
yields Uc ≈ 7.280, ν−1 ≈ 1.19, and ηϕ ≈ 0.310. Again,
finite-size effects are minimal here: we see in Fig. 4(a)
that data points for systems as small as L ¼ 7 also collapse
to the fitting curve.
Additionally, near the QCP, the correlation ratio R1;1

behaves as a universal function of ðU − UcÞL1=ν and Lz=β
where z is the dynamical critical exponent and β the inverse
temperature. Here, emergent Lorentz symmetry at the QCP
implies z ¼ 1. In Fig. 4(c), data collapse of R1;1 yields the
estimates Uc ≈ 7.265 and ν−1 ≈ 1.17. We can also plot
L1þηϕSðk ¼ 0Þ againstR1;1 to extract ηϕ ≈ 0.320 [Fig. 4(b)].
The main advantage of this method compared to that used in
Fig. 4(a) is that neither Uc nor ν need to be determined.
Similarly, to compute the fermion anomalous dimension

ηψ , we can utilize the following scaling hypothesis in the
proximity of the QCP:

LηψGk¼k� ðL;UÞ ¼ ð1þ α2L−ω2Þf2ðuL1=νÞ; ð10Þ

where

Gk¼k�ðL;UÞ≡ 1

L4

X

ij

eik
�·ði−jÞhc†i↑cj↓i; ð11Þ

and f2 is another smooth scaling function. Applying data
collapse to Gk�ðL;UÞ yields satisfactory results, especially
for L ≥ 9 [Fig. 4(d)]. We find ηψ ≈ 0.141, Uc ≈ 7.280,
and ν−1 ≈ 1.19.
Combining our results directly obtained at the QCP and

those extracted from data collapse in the vicinity of the
QCP, we obtain a consistent set of critical exponent
estimates with error bars that reflect the totality of our
results (Table I). In Supplemental Material [32], we have
investigated the impact of corrections to scaling on the
critical exponents we extract. Although the quality of data
collapse increases significantly upon introducing the asso-
ciated free parameters α1;2 and ω1;2 in Eqs. (9) and (10), we
find that the exponent values remain unchanged within the
statistical error bar.
Summary and outlook.—In summary, we applied a

PQMC method with Gutzwiller-projected trial state to
study the quantum phase transition from paramagnetic
Dirac semimetal to ferromagnetic insulator in a model of
a single two-component Dirac fermion in ð2þ 1ÞD subject
to an on-site repulsive Hubbard interaction U. We also
performed finite-temperature QMC calculations for the

(a) (b)

(c)

(d)

FIG. 4. Data collapse using the leading-order scaling hypoth-
esis to estimate Uc and the critical exponents ν−1, ηϕ, and ηψ . The
numerical values of the estimated critical exponents are added to
each sub-figure. The results are based on system sizes
9 ≤ L ≤ 19, although we have plotted L ¼ 7 using the estimated
critical exponents as well.
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same model. Both methods yield consistent results, from
which we conclude that the phase transition is continuous
and happens at Uc ¼ 7.28� 0.02 in units of the fermion
hopping amplitude. Besides determining the position of the
QCP, our main result is a numerically exact determination
of the critical exponents of the associated N ¼ 2 chiral
Ising GN universality class: the inverse correlation length
exponent ν−1 ¼ 1.19� 0.03, the order parameter anoma-
lous dimension ηϕ ¼ 0.31� 0.01, and the fermion anoma-
lous dimension ηψ ¼ 0.136� 0.005.
The discrepancy between the conformal bootstrap and the

other methods in Table I for ν−1 is more significant than for
other critical exponents. Interestingly, this appears to be
common to other IsingGNuniversality classes (see Table IV
in Ref. [23]). For instance, for N ¼ 4 Dirac flavors, the
bootstrap predicts ν−1 ≈ 0.76 while a wide variety of QMC
methods give answers in the range 1.06≲ ν−1 ≲ 1.35. For
N ¼ 8, the bootstrap predicts ν−1 ≈ 0.88 while QMC
predicts 1.0≲ ν−1 ≲ 1.3. In both those cases, the previous
QMC studies were sign-problem free and did not use SLAC
fermions. This suggests the discrepancy for ν−1 in Table I is
due neither to the use of SLAC fermions, the presence of a
sign problem, nor the choice of QMC method. Our work
adds to the growing number of QMC studies of Ising GN
criticality that challenge the existing bootstrap estimates for
ν−1. Further and more accurate bootstrap studies of the
GN universality classes are thus needed to resolve the
discrepancy.
As a future direction, it would be interesting to apply the

recently proposed adiabatic QMC algorithm [43] to our
model Hamiltonian and study the robustness of our results at
considerably lower temperatures.Additionally, our study can
be extended to other values of N, in particular the N ¼ 1
chiral Ising GN universality class which can be taken as an
effective model of interacting Majorana surface states in the
3D topological superfluid 3He-B [44,45]. Previous works on
this universality class using the conformal bootstrap [17,46],
FRG [18,47], and perturbative RG [14–16,48–50] have
proposed that N ¼ 1 spacetime supersymmetry emerges
at the ð2þ 1ÞD QCP. A numerical verification of this
prediction would be of high value.
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