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We present a gyrokinetic analysis of the vortex flow evolution in a magnetic island in collisionless
tokamak plasmas. In a short term ω̄Dt < 1, where ω̄D is the secular magnetic drift of the orbit center, initial
monopolar vortex flow approaches to its residual level determined by the neoclassical enhancement of
polarization shielding after collisionless relaxation. The residual level depends on the location inside an
island and is higher than the Rosenbluth-Hinton level [M.N. Rosenbluth and F.L. Hinton, Phys. Rev. Lett.
80, 724 (1998)] due to finite island width. In a long term ω̄Dt > 1, the residual vortex flow evolves to a
dipolar zonal-vortex flow mixture due to toroidicity-induced breaking of a helical symmetry. The mixture
forms localized flow shear layers near the island separatrix away from X points. The deviation of the
streamlines of the mixture flows from magnetic surfaces allows turbulence advection across the island. We
expect a small island w≲ qρTi=ŝ provides a favorable condition for this mixture flow formation, while the
monopolar vortex flow persists for a larger island.
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In the magnetic fusion community, there has been
growing interest in magnetic islands (MIs) interactions
[1–3] with microturbulence for thorough understanding and
prediction of confinement of magnetized fusion plasmas. In
fusion plasmas, MIs are often generated by intrinsic tearing
instabilities [4] or external perturbations [5,6] accompany-
ing a magnetic reconnection which is also an outstanding
research subject in astrophysical context. Their impact on
the confinement has turned out to be more complicated than
simple degradation by parallel collisional transport. For
example, MI formation at the H-mode pedestal top can be
crucial [7] for the resonant magnetic perturbation-induced
suppression of edge-localized modes [8], leading to a
sustainable H-mode operation. Moreover, MIs can some-
times induce confinement enhancement [9] accompanied
by an internal transport barrier formation. Its leading
physics mechanism is reduction of turbulent transport by
E × B flow shear [10,11]. In an MI, measurements suggest
that E × B shear flows circulate on the island contours
[12,13], forming monopolar vortex flows.
In addition, simulation studies [14–17] have found self-

generation of the vortex flows from turbulence, with a
simultaneous regulation of the turbulence level by the
vortex flow shearing. This is reminiscent of self-regulation
of turbulence by zonal flows which has been extensively
studied previously [18–20]. The turbulence-driven zonal
flows streaming on the nested magnetic surfaces is a prime
example of the self-organization in magnetized plasmas
[21,22]. While this common feature of the zonal and vortex
flows has promoted experimental [2,3,23] and simulation
studies [1,14–17,24] of the flow dynamics in MIs, there still
has been a lack of analytic progress on the vortex flows.
Rare exceptions include a pioneering work on the vortex

flow generation [25] based on the wave kinetics in the
reduced MHD system, and a recent work identifying highly
anisotropic vortex flow shearing rate around an MI [26].
Alongside the generation and the shearing, understanding
the damping process of turbulence-driven flows is an
important issue [27], as it is directly related with the
saturated turbulence level which limits the plasma perfor-
mance. Nevertheless, there has been no analytic work on
this issue for the vortex flows.
In this Letter, we present an analytic theory of the vortex

flow evolution in an MI in collisionless tokamak plasmas
for the first time, based on the nonlinear gyrokinetics [28–
30]. We find that the vortex flow evolution in MIs shows a
distinct feature from that of the zonal flows in tokamaks.
The residual monopolar vortex flows which survive after
the transit-time magnetic pumping naturally evolve in a
longer term to a dipolar flow with a considerable axisym-
metric zonal component near the X point. This leads to
localized flow shear layers near the island separatrix away
from the X point. In addition, consequent deviation of the
contours of the streamlines from those of the magnetic
surfaces opens a route for turbulence to be advected
through a region near the X point into the MI.
In tokamak plasmas, a MI at the mode rational surface is

represented by the perturbed poloidal magnetic flux
δψ ¼ ψ̃ cos ðmαÞ, where the amplitude ψ̃ is considered
to be a constant around the MI [31]. Here, α ¼ θ − ζ=qs is
the helical angle, where qs ¼ m=n is the safety factor at the
rational surface, and m and n are poloidal and toroidal
mode numbers of the island. We consider a static MI
without addressing the MI dynamics of the tearing mode
[32]. As such, we assume that the vortex flow evolution
occurs in a timescale shorter than the resistive diffusion
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time characterizing the MI growth in the Rutherford regime
[31]. We consider a circular-concentric low-β tokamak
plasma without Shafranov shift and use the orthogonal
toroidal coordinates ðr; θ; ζÞ, where r is the radial distance
from the magnetic axis and θ and ζ are the poloidal and the
toroidal angles. In the vicinity of the MI, the proper label
for the magnetic surfaces is the helical magnetic flux ψh ¼
ψ − χ=qs [33], where ψ and χ are the total poloidal and
toroidal magnetic fluxes. We use a normalized helical
magnetic flux [31]

X ¼ −
ψh

ψ̃
¼ 2

x2

w2
− cos ðmαÞ: ð1Þ

Here, x ¼ r − rs is the radial distance from the mode
rational surface rs, and w is half-width of the MI given
by w2 ¼ 4ðrsLs=mÞðB̃r=BÞ, where B̃r ¼ mψ̃=rsR is the
amplitude of the perturbed magnetic field and Ls ¼ qR=ŝ.
Inside the MI, we have X ∈ ½−1; 1�, where X ¼ −1 at theO
point and X ¼ 1 at the island separatrix. Equation (1)
defines the island geometry which has a helical symmetry,
i.e., an invariance under a translation along the reference
helical magnetic field line Bs. Within this model, the in-out
asymmetry of MI due to toroidicity is absent. Extension to a
simple model stellarator equilibrium is possible with an
appropriate choice of flux functions.
For the electrostatic potential representing the E × B

vortex flows, we apply the eikonal representation

δϕ ¼ ϕðR; tÞ exp fiSðXÞg; ð2Þ

where the eikonal function SðXÞ captures the fast variation
across the island flux surface and the envelope ϕðR; tÞ
describes the rest. Here, R is the gyrocenter position.
Similarly, we use δg ¼ g exp ðiSÞ, where δg is the gyro-
phase angle-independent part of the nonadiabatic response
of the particle distribution function satisfying δf ¼
−ðeδϕ=TÞF0 þ δg exp ð−ik · ρÞ. Here, F0 is the equilib-
rium distribution function, k ¼ ∇S is the vortex flow wave
vector and ρ is the gyroradius vector. The gyrokinetic
equation for the vortex flows is

∂g
∂tþvkb ·∇gþ iωDgþ vd ·∇g¼

e
T
F0J0

∂ϕ
∂t þNF0; ð3Þ

where b is a unit vector along the total magnetic field, vd is
the magnetic drift velocity, ωD ≡ k · vd is the magnetic
drift frequency, J0¼J0ðkXρÞ is a Bessel function, kX ≡ jkj,
and NF0 is the vortex flow source from the E × B non-
linearity. The third and fourth terms on the left-hand side
(LHS) represent the eikonal factor and envelope contribu-
tions to the magnetic drift of δg. While the latter is small
compared to the former, it is an essential piece in the long
term evolution of the vortex flows which will be shown
later. The magnetic drift frequency can be written as [34]

ωD ¼ vkb · ∇Qþ ω̄D; ð4Þ

whereQ is the finite orbit width (FOW) factor and ω̄D is the
secular drift frequency of the orbit center. Here, the bounce-
average ð� � �Þ≡ ½H dlkð� � �Þ=vk�=ð

H
dlk=vkÞ eliminates

dynamics faster than or comparable to the bounce or transit
motion. For the evolution of the vortex flows after fast
collisionless relaxation, we multiply Eq. (3) by exp ðiQÞ
and take the bounce average to obtain the bounce-averaged
kinetic equation

∂h
∂t þ eiQvd · ∇ðhe−iQÞ þ iω̄Dh

¼ e
T
F0

∂
∂t e

iQJ0ϕþ eiQNF0; ð5Þ

where h ¼ g exp ðiQÞ is the bounce-angle-independent part
of g for t > ω−1

b . The LHS of Eq. (5) can be simplified as
follows in the long-wavelength limit kXρ ≪ Q ≪ 1,

∂h
∂t þ ωpr

∂h
∂ζ

����
ψ

þ iω̄Dh ¼ e
T
F0

∂
∂t e

iQJ0ϕþ eiQNF0: ð6Þ

Here, ωpr ¼ vd · ∇ζ is the toroidal precession frequency.
Note that the origin of ω̄D, the secular drift frequency
across the island magnetic surface X, is also the toroidal
precession, because ω̄D ∝ vd · ∇α ∝ vd · ∇ζ. With
1 < q ∼ kXw, we have ω̄D ∼ ωpr.
Short term evolution.—Fully consistent nonlinear gyro-

kinetic calculation of the vortex flow is a formidable task.
Here we pose the problem following [27] in which NF0 in
Eq. (3) from the E × B nonlinearity is modeled by an initial
kick acting as the unit flow source. We first consider the
vortex flows in a short term ω−1

b < t < ω−1
pr , neglecting the

second and the third terms on the lhs of Eq. (6). In this time
domain, we recover Eq. (6) of Ref. [27], and therefore
have the same formal solution which, with the use of the
quasineutrality condition, leads to

ðχcl þ χncÞϕRðXÞ ¼ χclϕðt ¼ 0Þ; ð7Þ

where ϕRðXÞ is the time-asymptotic (ωbt ≫ 1, but
t < ω−1

pr ) value envelope of the residual vortex potential,
and

χcl ¼
�Z

d3v
Fi0

n0
k2Xρ

2
i =2

�
¼ hk2Xρ2Tii; ð8Þ

χnc ¼
�Z

d3v
Fi0

n0
ðQi − Q̄iÞ2

�
; ð9Þ

are classical and neoclassical susceptibilities in long-
wavelength limit [35–37]. Here, h� � �i is the flux surface
average, ρTi is the thermal ion Larmor radius, and Qi − Q̄i
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represents deviation of the guiding center from the bounce
or transit orbit center of ions, shifted from the reference
location by Q̄i. For fast ions, our long-wavelength approx-
imations are not well justified and different asymptotic
regimes should be considered. Effects of fast ions on the
residual zonal flow have been addressed in the absence of
MI showing a modest increase in the residual level [38]. In
this calculation, we have considered an initial kick N ¼
−δðtÞnpolðt ¼ 0Þ=n0 [27] and neglected FLR and FOW of
electrons, as they are much smaller than those of ions. Here,
npol is the classical polarization density. Taking Fi0 to be
Maxwellian, with the use of polar coordinates [26], we
obtain explicit expressions

χcl ¼ fG0ðρÞ þ G1ðρÞgk2wρ2Ti; ð10Þ

χnc ¼ f1.63G0ðρÞ þ 0.12G1ðρÞg
q2ffiffiffi
ϵ

p k2wρ2Ti; ð11Þ

to the lowest order in the inverse aspect ratio ϵ ¼ r=R
and Δiŝ=rs, where Δi is the ion orbit width. Here,
ρ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðX þ 1Þ=2p

, kw ≡ 4S0ðXÞ=w is a characteristic wave
number of the vortex flow, and

G0ðρÞ≡
�
x2

w2

�
¼ EðρÞ

KðρÞ − ð1 − ρ2Þ; ð12Þ

and

G1ðρÞ≡
�
1

4

�
mw
2rs

�
2

sin2ðmαÞ
�

¼ 1

3

�
mw
2rs

�
2
�
ð2ρ2 − 1Þ EðρÞ

KðρÞ þ 1 − ρ2
	

ð13Þ

are the geometrical factors coming from the variation of the
helical magnetic flux in radius r and helical angle α,
respectively. The former is related to the finite magnetic
shear ŝ, and the latter is due to the island perturbation δψ .
The factor ðmw=2rsÞ2 in G1 from w2 ∼ δBr ∼ δψ shows
that G1 represents the finite island width effect. In Eq. (11),
note that while the magnetic drift in radius r yields the same
enhancement factor as that of an axisymmetric tokamak
[27], the drift in helical angle α results in an additional but
subdominant contribution to the neoclassical polarization
shielding. It is because the orbit tends to be distorted in a
same way by the α component of the drift in the inner and
the outer halves of the trajectory due to its even parity in θ,
resulting in only a small effect on the orbit width.
From Eqs. (7)–(11), we obtain the residual vortex flow

level

ϕR

ϕðt ¼ 0Þ ¼
χcl

χcl þ χnc

¼ 1


�
1þ 1.63G0ðρÞ þ 0.12G1ðρÞ

G0ðρÞ þG1ðρÞ
q2ffiffiffi
ϵ

p
	
; ð14Þ

for the timescale ω−1
bi ≪ t < ω̄−1

D . Because of the small
numerical coefficient 0.12 for G1 in the neoclassical
susceptibility, this magnetic surface-dependent residual
vortex flow level is comparable, but higher than the
Rosenbluth-Hinton (RH) level [27] of the residual zonal
flows in tokamaks. Obviously, the modification comes
from the finite island width. So, the helically symmetric
vortex is a robust structure in this timescale. Indeed, we
recover the RH level in the limit of zero island width
mw=2rs → 0, where G1 → 0. Figure 1 shows magnetic
surface dependence of the residual vortex flow level. It is
the highest at the O point and decreases continuously
with ρ toward the island separatrix. In a cylindrical plasma,
there is no magnetically trapped particles and no neo-
classical enhancement of polarization shielding. Therefore
the residual level in Eq. (14) approaches 1, as we take
ϵ → 0 at fixed BT=BP.
In this Letter, we have neglected a magnetic field

strength B inhomogeneity from the island perturbation
δψ in the magnetic drift frequency ωD ¼ k · vd, as its
contribution to the magnetic drift velocity vd ∝ B × ∇B (in
low β) is smaller than that of toroicity by ∼ðw=rÞ4ϵ=q2.
That is, the guiding center orbit has been approximated to
be the same as that in the axisymmetric tokamak geometry
and is thus governed by toroidicity. The MI effect on the
residual vortex flow shown in Eq. (14) comes from the
geometrical effect represented by ∇X in the vortex flow
wave vector k.

FIG. 1. Spatial dependence of the residual vortex flow level
R≡ ϕR=ϕðt ¼ 0Þ in a magnetic island with mw=2rs ¼ 1=2 (red)
and 1=3 (blue), for typical parameters q ¼ 2 and ϵ ¼ 0.12 [39].
Here, we denote the Rosenbluth-Hinton residual level as
RRH ≡ 1=ð1þ 1.63q2=

ffiffiffi
ϵ

p Þ.
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Long term evolution.—We continue our analysis in a
longer time ω−1

pr < t using the same model for the sourceN.
In the long term, the toroidal precession effect enters to the
vortex flow dynamics. From Eq. (6), it is obvious that the
toroidal precession breaks the helical symmetry and
homogenizes the envelopes, which have been flux func-
tions in X in a short term, along the tokamak magnetic
surfaces ψ . This long term toroidicity-induced breaking
of the helical symmetry of vortex flows is a reciprocal
example of the RMP-induced long-term decay of zonal
flows [40] in which a helical magnetic perturbation
influences the axisymmetric zonal flow evolution. This
shares a common physics with the zonal flow evolution in
stellerators [41], that the long-term orbit deviation from the
helical field structure results in a flow damping. The crucial
difference is that while the secular radial drift of the
helically trapped particles is the origin of the deviation
in stellerators, it is the toroidal precession of the toroidally
trapped particles which make the long-term effect in our
problem. The equation for the final state after this homog-
enization is obtained using

ω̄D ¼ ωpr
∂Λ
∂ζ

����
ψ

; ð15Þ

a form exhibiting the proportionality ω̄D ∝ ωpr. Hereafter,
we assume a slowly varying S0ðXÞ, and then we readily
obtain Λ ¼ −S0 cos ðnζÞ. From the functional similarity
with the first term on the right-hand side (RHS) of Eq. (4),
we realize that Λ represents finite magnetic surface
deviation (FSD) from the tokamak surfaces due to the
island perturbation. Multiplying Eq. (6) by exp ðiΛÞ and
taking the drift average [42], we obtain the drift-averaged
kinetic equation

∂
∂t ½e

iΛh�ðψÞ ¼ e
T
F0½eiΛeiQJ0ϕ� þ ½eiΛeiQN�F0; ð16Þ

where ½� � ��≡ ðHd dζð� � �Þ=ωprÞ=ð
H
d dζ=ωprÞ is the drift

average over the orbit center trajectory along the toroidal
angle ζ. Now, the flow carried by the particles described in
Eq. (16) is a mixture of the zonal and vortex flows

δϕ ¼ ϕMðψÞ exp fiSðXÞg: ð17Þ

Here, a specific form ϕM is chosen to characterize the
breaking of the helical symmetry due to the toroidal
precession. Introducing X dependence in ϕM leads to a
minor quantitative change, subdominant to that due to
a fast variation in exp fiSðXÞg. We substitute the solu-
tion of Eq. (16) into the quasineutrality and take the flux
surface average h� � �i0 over the tokamak magnetic surface.
Then, we obtain an expression of the envelope of the
mixture ϕM

heiSi0½1 − J20ðS0Þ�
�
1þ Ti

Te

�
ϕMðψÞ

¼ J20ðS0Þhk2Xρ2TieiSϕðt ¼ 0Þi0: ð18Þ

In Eq. (18), J0ðS0Þ comes from the FSD factor expðiΛÞ.
Note that Λ≲ 1 is larger than the Larmor radius and orbit
width kXρi and Q for long-wavelength flows, which
enables a simple expression of Eq. (18). Also, we have
considered only the lowest-order orbits in an axisymmetric
tokamaks for simplicity neglecting orbit modifications due
to MI [43,44] which plays a role in MI evolution [32]. For a
uniform initial vortex potential envelope ϕðt ¼ 0Þ, we have

ϕM

ϕðt ¼ 0Þ ¼
k2wρ2Ti

1þ Ti=Te

J20ðS0Þ
1 − J20ðS0Þ

×

�
4x2

w2
þ
�
mw
2rs

�
2 J0ðS0Þ þ J2ðS0Þ

2J0ðS0Þ
�
: ð19Þ

Note that there is a one-to-one correspondence between the
radial distance x and the unperturbed poloidal magnetic
flux ψ from the relation dψ ¼ RBθdr ¼ ðrBζ=qÞdr.
The amplitude of ϕM is smaller than ϕR in the interim
state by ∼k2wρ2Tið1þ1.6q2=

ffiffiffi
ϵ

p Þ, with an ordering ϕR ∼ϕRH,
S0 ∼ 1, and J0ðS0Þ ∼ J2ðS0Þ ∼ 1. Meanwhile, the inhomo-
geneity of the potential becomes more pronounced com-
pared to that in the interim state. Accordingly, the mixture
potential δϕ in Eq. (17) is highly anisotropic on the island
magnetic surfaces and forms localized E × B flow shear
layers near the island separatrix, as shown in Fig. 2. In
experiments, significant Er shear has been observed near
the island boundaries [13]. While such an Er profile in the
island region has typically been explained by the pressure
profile modification, our result suggests a different origin of
the localized Er shear near the island separatrix.
We emphasize that the deviation of the potential con-

tours, the streamlines of E × B flows, from the island
magnetic surfaces effectively reduces the isolated region in
an MI, changing from monopolar to dipolar vortex as
shown in Fig. 2. The mixture flow tends to reduce the
turbulence spreading [45] into an MI across its E × B flow
shear layer [46] as with vortex flows [47]. However,
turbulence can now move in-and-out of the MI across
the island surfaces by an advection along the open stream-
lines near the X point.
In reality, this turbulence contamination could regulate

slowly growing MIs. Indeed, for an example KSTAR
discharge [39], ω̄D for the mixture formation is faster than
the inverse resistive diffusion time η=μ0w2 characterizing
the MI growth in the Rutherford regime [31]. The condition
for a collisionless flow mixture presented in this Letter is
ω̄D > μkk2k, where μk is the parallel viscosity and kk ∼
ðmw=2rsÞ=ðqR=ŝÞ is the parallel wave number of the
mixture. For long mean free path tokamak plasmas [48],
this leads to as kXρTi > ŝ=q. With S0 ∼Oð1Þ, this indicates
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that the flow mixture can be formed in a small MI with
w < qρTi=ŝ. For a large MI with w > qρTi=ŝ, monopolar
vortex would persist as reported in Ref. [16]. The q=ŝ
dependence of the critical island width can reconcile the
result of Ref. [17], where a monopolar vortex was observed
in an MI having smaller width in ρi unit than the critical
size reported in Ref. [16].
Several issues, including the followings, remain to be

addressed for a comprehensive description of turbulence-
vortex flow interaction in an MI in tokamaks. Flow
damping mechanisms other than linear collisionless damp-
ing studied in this Letter, such as collisional damping by
neoclassical friction [49], nonlinear damping [50], and
resonant potential vorticity diffusion [51], should be
examined for vortex flows and flow mixtures. Also, works
on the vortex flow generation considering toroidicity and
island geometry are desired. In addition, the formalism
employed in our work addressing the bounce-average and
drift orbit of the bounce center in MI-distorted equilibrium
can become useful in astrophysical systems such as particle
acceleration in solar flares [52].
In summary, we have shown by gyrokinetic analyses that

spatially dependent residual vortex flow level in a magnetic
island is higher than the Rosenbluth-Hinton level due to
finite island width, and that in a longer term, the residual
vortex flows eventually evolve to the zonal-vortex flow
mixtures by breaking of the helical symmetry by toroidal
precession of flow-carrying particles. The mixture forms
localized flow shear layers near the island separatrix away
from the X points. At the same time, as the streamlines are

detached from the magnetic surfaces, turbulence can be
advected across the island along the mixture flow stream-
lines. Our results suggest new mechanisms of the E × B
shear layer formation near the island boundaries and of the
turbulence leakage into the island. Finally, we suggest
different flow structure depending on the island size. We
expect a dipolar flow mixture in a small island w≲ qρTi=ŝ,
but a monopolar vortex flow in a large island w≳ qρTi=ŝ.
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